Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T22:41:48.333Z Has data issue: false hasContentIssue false

Chemodynamical Simulations of the Milky Way Galaxy - Inhomogeneous Chemical Enrichment

Published online by Cambridge University Press:  06 January 2014

Chiaki Kobayashi*
Affiliation:
Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire; College Lane, Hatfield AL10 9AB, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The predictions of our chemodynamical simulations from cosmological initial conditions are as follows: The disk formed Inside-out. Metallicity radial and vertical gradients exist, but no [α/Fe] radial gradient. Metallicity radial gradient is steeper at higher redshifts. The [α/Fe]-[Fe/H] relation is caused by the delayed enrichment of Type Ia supernovae (not with long lifetimes, but with the metallicity effect). The bulge formed through the assembly of small gas-rich galaxies at high redshifts. [α/Fe] is higher, [Mn/Fe] is lower, [(Na, Al)/Fe] are higher than the disk. Metallicity and [α/Fe] vertical gradients exist, which is caused by the increase of metal-rich and low [α/Fe] populations at lower latitudes. Bars may form later, which may show boxy and cylindrical rotation. Half of thick disk stars (kinetically selected) come from minor mergers. [α/Fe] is higher, and [Mn/Fe] is lower than the thin disk, but [(Na, Al, Cu, Zn)/Fe] are lower than the bulge. There are metallicity vertical, weak metallicity radial, and no [α/Fe] radial gradients. It would be interesting to compare the predictions with other models such as radial mixing, disk heating, and clumpy disks.

For the solar neighborhood, the frequency distributions of elements from oxygen to zinc are in excellent agreement not only for the average values but also for the scatter. In chemodynamical simulations, chemical enrichment takes place inhomogeneously, and the scatter originates from a combination of various effects - mergers, migration, and in-situ. The inhomogeneous enrichment is important in reproducing observed nitrogen abundances, and also in understanding elemental abundance patterns of dwarf spheroidal galaxies and carbon-enhanced damped Lyman α systems.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Argast, D., Samland, M., Thielemann, F.-K., & Gerhard, O. E., 2002, A&A, 388, 842Google Scholar
Beers, T. C. & Christlieb, N. 2005, ARA&A, 43, 531Google Scholar
Carollo, D., Beers, T. C., Bovy, J., et al. 2012, ApJ, 744, 195CrossRefGoogle Scholar
Casagrande, L., Schönrich, R., Asplund, M., et al. 2011, A&A, 530, 138Google Scholar
Cheng, J. Y., Rockosi, C. M., Morrison, H. L., et al. 2012, ApJ, 746, 149Google Scholar
Cooke, R., Pettini, M., Steidel, C. C., et al. 2010, MNRAS, 409, 679Google Scholar
Cooke, R., Pettini, M., & Murphy, M. T. 2012, MNRAS, 425, 347Google Scholar
Cresci, G., Mannucci, F., Maiolino, R., et al. 2010, Nature, 467, 811CrossRefGoogle Scholar
Greif, T. H., Springel, V., White, S. D. M., et al. 2011, ApJ, 737, 75Google Scholar
Jones, T., Ellis, R., Jullo, E., & Richard, J. 2010, ApJ, 725, L176CrossRefGoogle Scholar
Kobayashi, C., 2004, MNRAS, 347, 740Google Scholar
Kobayashi, C., Karakas, I. A., & Umeda, H. 2011a, MNRAS, 414, 3231CrossRefGoogle Scholar
Kobayashi, C., Izutani, N., Karakas, A. I.et al., 2011c, ApJ, 739, L57Google Scholar
Kobayashi, C. & Nakasato, N. 2011, ApJ, 729, 16 (KN11)Google Scholar
Kobayashi, C., Springel, V., & White, S. D. M. 2007, MNRAS, 376, 1465CrossRefGoogle Scholar
Kobayashi, C., Tominaga, N., & Nomoto, K. 2011b, ApJ, 730, L14Google Scholar
Kobayashi, C., Tsujimoto, T., Nomoto, K., Hachisu, I, & Kato, M. 1998, ApJ, 503, L155Google Scholar
Kobayashi, C., Umeda, H., Nomoto, K., Tominaga, N., & Ohkubo, T. 2006, ApJ, 653, 1145Google Scholar
Maeda, K. & Nomoto, K. 2003, ApJ, 598, 1163Google Scholar
McWilliam, A., Rich, R. M., & Smecker-Hane, T. A. 2003, ApJ, 592, 21CrossRefGoogle Scholar
Nissen, P. E. & Schuster, W. J. 2011, A&A, 530, 15Google Scholar
Nomoto, K., Kobayashi, C., & Tominaga, N. 2013, ARA&A, in press (NKT13)Google Scholar
Norris, J. E., Gilmore, G., Wyse, R. F. G., Yong, D., & Frebel, A. 2010, ApJ, 722, 104Google Scholar
Pilkington, K., Few, C. G., Gibson, B. K., et al. 2012, A&A, 540, A56Google Scholar
Romano, D., Cescutti, G., & Matteucci, F. 2011, MNRAS, 418, 696CrossRefGoogle Scholar
Ruchti, G. R., Fulbright, J. P., Wyse, R. F. G., et al. 2011, ApJ, 737, 9Google Scholar
Scannapieco, C., Wadepuhl, M., Parry, O. H., et al. 2012, MNRAS, 423, 1726CrossRefGoogle Scholar
Schönrich, R. & Binney, J. 2009, MNRAS, 396, 203Google Scholar
Tolstoy, E., Hill, V., & Tosi, M. 2009, ARA&A, 47, 371Google Scholar
Tumlinson, J., 2006, ApJ, 641, 1Google Scholar
Umeda, H. & Nomoto, K. 2002, ApJ, 565, 385Google Scholar
Yuan, T.-T., Kewley, L. J., Swinbank, A. M., et al. 2011, ApJ, 732, L14Google Scholar