Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T03:27:24.108Z Has data issue: false hasContentIssue false

Chemical Yields from Supernovae and Hypernovae

Published online by Cambridge University Press:  01 June 2008

Ken'ichi Nomoto
Affiliation:
Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-85668, Japan email: [email protected] Department of Astronomy, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
Shinya Wanajo
Affiliation:
Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-85668, Japan email: [email protected] Department of Astronomy, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
Yasuomi Kamiya
Affiliation:
Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-85668, Japan email: [email protected] Department of Astronomy, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
Nozomu Tominaga
Affiliation:
National Astronomical Observatory, Mitaka, Tokyo 113-0033, Japan
Hideyuki Umeda
Affiliation:
Department of Astronomy, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review the final stages of stellar evolution, supernova properties, and chemical yields as a function of the progenitor's mass. (1) 8 - 10 M stars are super-AGB stars when the O+Ne+Mg core collapses due to electron capture. These AGB-supernovae may constitute an SN 2008S-like sub-class of Type IIn supernovae. These stars produce little α-elements and Fe-peak elements, but are important sources of Zn and light p-nuclei. (2) 10 - 90 M stars undergo Fe-core collapse. Nucleosynthesis in aspherical explosions is important, as it can well reproduce the abundance patterns observed in extremely metal-poor stars. (3) 90 - 140 M stars undergo pulsational nuclear instabilities at various nuclear burning stages, including O and Si-burning. (4) Very massive stars with M ≳ 140 M either become pair-instability SNe, or undergo core-collapse to form intermediate mass black holes if the mass loss is small enough.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Amati, L., Della Valle, M., Frontera, F., et al. 2007, A&A 463, 913Google Scholar
Arnett, W. D. 1996, Supernovae and Nucleosynthesis (Princeton: Princeton Univ. Press)CrossRefGoogle Scholar
Bailyn, C. D., Jain, R. K., Coppi, P., & Orosz, J. A. 1998, A&A 499, 367Google Scholar
Baraffe, I., Heger, A., & Woosley, S. E. 2001, A&A 550, 890Google Scholar
Bessell, M. S. & Christlieb, N. 2005, in Hill, V. et al. (eds.), From Lithium to Uranium, Proc. IAU Symposium No. 228 (Cambridge: Cambridge Univ. Press), 237Google Scholar
Cayrel, R., et al. 2004, A&A 416, 1117Google Scholar
Christlieb, N., et al. 2002, Nature 419, 904CrossRefGoogle Scholar
Chugai, N. N. & Utrobin, V.P. 2000, A&A 354, 557Google Scholar
Della Valle, M., et al. 2006, Nature 444, 1050CrossRefGoogle Scholar
Depagne, E., et al. 2002, A&A 390, 187Google Scholar
Ebisuzaki, T., et al. 2001, A&A 562, L19Google Scholar
Fynbo, J. P. U., et al. 2006, Nature 444, 1047CrossRefGoogle Scholar
Frebel, A., et al. 2005, Nature 434, 871CrossRefGoogle Scholar
Garcia-Berro, E., Ritossa, C., & Iben, I. Jr., 1997, A&A 485, 765Google Scholar
Gal-Yam, A., et al. 2006, Nature 444, 1053CrossRefGoogle Scholar
Hashimoto, M., Iwamoto, K., & Nomoto, K. 1993, A&A 322, L206Google Scholar
Heger, A. & Woosley, S. E. 2002, A&A 567, 532Google Scholar
Heger, A. & Woosley, S. E. 2008, arXiv:0803.3161Google Scholar
Hendry, M. A., et al. 2005, MNRAS 359, 906CrossRefGoogle Scholar
Hofman, et al. 2008, A&A 395, L672Google Scholar
Ibrahim, A., Boury, A., & Noels, A. 1981, A&A 103, 390Google Scholar
Iwamoto, K., Mazzali, P. A., Nomoto, K., et al. 1998, Nature 395, 672CrossRefGoogle Scholar
Iwamoto, N., Umeda, H., Tominaga, N., Nomoto, K., & Maeda, K. 2005, Science 309, 451CrossRefGoogle Scholar
Kalgero, J., et al. 2008, A&A 670, 774Google Scholar
Kitaura, & Janka, T. 2006, A&A 133, 175Google Scholar
Kobayashi, C., Umeda, H., Nomoto, K., Tominaga, N., & Ohkubo, T. 2006, A&A 653, 1145Google Scholar
Limongi, M., Straniero, , & Chieffi, A. 2000, ApJS 129, 625Google Scholar
Lodders, K. 2003, A&A 591, 1220Google Scholar
Maeda, K. & Nomoto, K. 2003, A&A 598, 1163Google Scholar
Maeda, K., et al. 2008, Science 319, 1220CrossRefGoogle Scholar
Modjaz, M., et al. 2008, A&A in press (arXiv:0801.0221)Google Scholar
Nagataki, S., Mizuta, A., & Sato, K. 2006, A&A 647, 1255Google Scholar
Nomoto, K. 1984, A&A 277, 791Google Scholar
Nomoto, K. 1987, A&A 322, 206Google Scholar
Nomoto, K., Maeda, K., Umeda, H., Ohkubo, T., Deng, J., & Mazzali, P. 2003, in IAU Symp. 212, A Massive Star Odyssey, ed. Hucht, V. D., et al. (San Fransisco: ASP), 395Google Scholar
Nomoto, K., et al. 2004, in Fryer, C. L. (ed.), Stellar Collapse (Astrophysics and Space Science: Kluwer), p. 277 (astro-ph/0308136)CrossRefGoogle Scholar
Nomoto, K., et al. 2005, in The Fate of Most Massive Stars, ed. Humphreys, R. & Stanek, K. (ASP Ser. 332), 374 (astro-ph/0506597)Google Scholar
Nomoto, K., et al. 2006, Nuclear Phys A 777, 424 (astro-ph/0605725)CrossRefGoogle Scholar
Ohkubo, T., Umeda, H., Maeda, K., Nomoto, K., Suzuki, T., Tsuruta, S., & Rees, M. J. 2006, A&A 645, 1352Google Scholar
Ohkubo, T., Nomoto, K., Umeda, H., Yoshida, N., & Tsuruta, S. 2008, A&A submittedGoogle Scholar
Poelarends, A. J. T., Herwig, F., Langer, N., & Heger, A. 2008, A&A 675, 614Google Scholar
Portezies Zwart, S. F., & van den Heuvel, E. P. J. 2007, Nature 450, 388CrossRefGoogle Scholar
Prieto, J. L., et al. 2008, A&A 681, L9Google Scholar
Smartt, S. J., et al. 2008, MNRAS submitted (arXiv:0809.0403)Google Scholar
Thompson, T. A., et al. 2008, A&A submitted (arXiv:0809.0510)Google Scholar
Timmes, F. X., & Woosley, S. E., 1992, A&A 396, 649Google Scholar
Tominaga, N., Maeda, K., Umeda, H., Nomoto, K., Tanaka, , et al. 2007, A&A 657, L77Google Scholar
Tominaga, N. 2008, A&A in press (arXiv:0711.4815)Google Scholar
Tumlinson, J. 2006, A&A 641, 1Google Scholar
Turatto, M., et al. 1998, A&A 498, L129Google Scholar
Umeda, H. & Nomoto, K. 2002, A&A 565, 385Google Scholar
Umeda, H. & Nomoto, K. 2008, A&A 673, 1014Google Scholar
Wanajo, S., Nomoto, K., Janka, H.-T., Kitaura, F. S., & Muller, B. 2008, A&A submittedGoogle Scholar
Woosley, S. E. & Bloom, J. S. 2006, ARA&A 44, 507Google Scholar
Woosley, S. E., Blinnikov, S., & Heger, A. 2007, Nature 450, 390CrossRefGoogle Scholar
Yoshida, N., Omukai, K., & Hernquist, L. 2008, Science 321, 669CrossRefGoogle Scholar
Zampieri, L., et al. 2003, MNRAS 338, 711CrossRefGoogle Scholar