Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T12:12:33.698Z Has data issue: false hasContentIssue false

The chemical structure of the hot pulsating DB white dwarf KIC 08626021 from asteroseismology

Published online by Cambridge University Press:  09 October 2020

S. Charpinet
Affiliation:
Institut de Recherche en Astrophysique et Planétologie, CNRS, Université de Toulouse, CNES, 14 avenue Edouard Belin, F-31400 Toulouse, France email: [email protected]
P. Brassard
Affiliation:
Dèpartement de Physique, Université de Montrèal, Québec H3C 3J7, Canada
N. Giammichele
Affiliation:
Institut de Recherche en Astrophysique et Planétologie, CNRS, Université de Toulouse, CNES, 14 avenue Edouard Belin, F-31400 Toulouse, France email: [email protected]
Gilles Fontaine
Affiliation:
Dèpartement de Physique, Université de Montrèal, Québec H3C 3J7, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Giammichele et al. (2018) proposed a full determination, largely independent of evolution calculations, of the chemical composition and stratification inside the hot pulsating DB white dwarf KIC 08626021. However, Timmes et al. (2018) pointed out that neglecting the effects of neutrino cooling, such as in the static models used in Giammichele et al. study, could impact significantly the derived seismic solution and compromise conclusions drawn upon it. Here we present a reanalysis of KIC 08626021, using improved static models which now incorporate more realistic luminosity profiles that reflect the still significant energy losses induced by neutrino emission mechanisms in hot DB white dwarfs. We show that this effect has only a limited impact on the derived seismic model properties and, more importantly, that all the conclusions brought by Giammichele et al. (2018) remain entirely valid.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Charpinet, S., Brassard, P., Giammichele, N., & Fontaine, G. 2019, A&A (Letters), 628, L2Google Scholar
De Gerónimo, F. C., Althaus, L. G., Córsico, A. H., Romero, A. D., & Kepler, S. O. 2017, A&A, 599, A21Google Scholar
De Gerónimo, F. C., Althaus, L. G., Córsico, A. H., Romero, A. D., & Kepler, S. O. 2018, A&A, 613, A46Google Scholar
Fields, C. E., Farmer, R., Petermann, I., Iliadis, C., & Timmes, F. X. 2016, ApJ, 823, 46CrossRefGoogle Scholar
Giammichele, N., Charpinet, S., Fontaine, G., & Brassard, P. 2017a, ApJ, 834, 136CrossRefGoogle Scholar
Giammichele, N., Charpinet, S., Brassard, P., & Fontaine, G. 2017b, A&A, 598, A109Google Scholar
Giammichele, N., Charpinet, S., Fontaine, G., et al. 2018, Nature, 554, 73CrossRefGoogle Scholar
Timmes, F. X., Townsend, R. H. D., Bauer, E. B., et al. 2018, ApJ (Letters), 867, L30CrossRefGoogle Scholar