Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T00:55:46.874Z Has data issue: false hasContentIssue false

Chemical abundances of secondary stars in low mass X-ray binaries

Published online by Cambridge University Press:  01 August 2006

Jonay I. González Hernández
Affiliation:
Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain email: [email protected], [email protected], [email protected] CIFIST Marie Curie Excellence Team Observatoire de Paris-Meudon, GEPI, 5 place Jules Janssen, 92195 Meudon Cedex, France
Rafael Rebolo
Affiliation:
Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain email: [email protected], [email protected], [email protected]
Garik Israelian
Affiliation:
Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain email: [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Low mass X-ray binaries (LMXBs) offer us an unique opportunity to study the formation processes of compact objects. Secondary stars orbiting around either a black hole or a neutron star could have captured a significant amount of the ejected matter in the supernova explosions that most likely originated the compact objects. The detailed chemical analysis of these companions can provide valuable information on the parameters involved in the supernova explosion such us the mass cut, the amount of fall-back matter, possible mixing processes, and the energy and the symmetry of the explosion. In addition, this analysis can help us to find out the birth place of the binary system. We have measured element abundances of secondary stars in the LMXBs A0620–00, Cen X-4, XTE J1118+480 and Nova Sco 94. We find solar or above solar metalicity for all these systems, what appears to be independent on their locations with respect to the Galactic plane. A comparison of the observed abundances with yields from different supernova explosion together with the kinematic properties of these systems suggest a supernova origin for the compact objects in all of them except for A0620–00, for which a direct collapse cannot be discarded.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Casares, J., Charles, P. A., Naylor, T. 1992, Nature, 355, 614Google Scholar
García, López R. J., Rebolo, R., Martín, E. L. 1994, A&A, 282, 518Google Scholar
González, Hernández J. I.Rebolo, R., Israelian, G., Casares, J., Maeder, A., Meynet, G. 2004, ApJ, 609, 988Google Scholar
González, Hernández J. I., Rebolo, R., Penarrubia, J., Casares, J., Israelian, G. 2005a, A&A, 435, 1185Google Scholar
González, Hernández J. I., Rebolo, R., Israelian, G., Casares, J., Maeda, K., Bonifacio, P., Molaro, P. 2005b, ApJ, 630, 495CrossRefGoogle Scholar
González, Hernández J. I., Rebolo, R., Israelian, G., Harlaftis, E. T., Filippenko, A. V., Chornock, R. 2006, ApJL, 644, L49CrossRefGoogle Scholar
Kurucz, R. L. 1993, ATLAS9 Stellar Atmospheres Programs and 2 km:s−1 Grid, CD-ROM (Smithsonian Astrophysical Observatory: Cambridge)Google Scholar
Israelian, G., Rebolo, R., Basri, G., Casares, J. & Martín, E. L. 1999, Nature, 401, 142Google Scholar
Maccarone, T. J., Jonker, P. G., Sills, A. I. 2005, A&A, 435, 671Google Scholar
Maeda, K., Nakamura, T., Nomoto, K., Mazzali, P. A., Patat, F., Hachisu, I. 2002, ApJ, 565, 405CrossRefGoogle Scholar
Martín, E. L., Rebolo, R., Casares, J., Charles, P. A. 1992, Nature, 358, 129CrossRefGoogle Scholar
Martín, E. L., Rebolo, R., Casares, J., Charles, P. A. 1994, ApJ, 435, 791Google Scholar
Martín, E. L., Spruit, H. C., van Paradijs, J. 1994b, A&A, 291, L43Google Scholar
Mirabel, I. F., Dawan, V., Mignani, R. P., Rodrigues, I. & Guglielmetti, F. 2001, Nature, 413, 139Google Scholar
Sheinis, A. I. et al. 2002, PASP, 114, 851CrossRefGoogle Scholar
Sneden, C. 1973, PhD Dissertation (University of Texas: Austin)Google Scholar
Thorburn, J. A., Hobbs, L. M., Deliyannis, C. P. & Pinsonneault, M. H. 1993, ApJ, 415, 150CrossRefGoogle Scholar
Umeda, H. & Nomoto, K. 2002, ApJ, 565, 385CrossRefGoogle Scholar
Umeda, H. & Nomoto, K. 2005, ApJ, 619, 427CrossRefGoogle Scholar