Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T02:08:38.712Z Has data issue: false hasContentIssue false

Charting the evolution of the ages and metallicities of massive galaxies since z = 0.7

Published online by Cambridge University Press:  17 August 2012

Anna Gallazzi
Affiliation:
Dark Cosmology Center, University of Copenhagen, Niels Bohr Institute, Juliane Maries Vej 30, 2100 Copenhagen, Denmark
Eric F. Bell
Affiliation:
Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA
Stefano Zibetti
Affiliation:
Dark Cosmology Center, University of Copenhagen, Niels Bohr Institute, Juliane Maries Vej 30, 2100 Copenhagen, Denmark
Daniel Kelson
Affiliation:
Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101, USA
Jarle Brinchmann
Affiliation:
Leiden Observatory, Leiden University, 2300RA, Leiden, the Netherlands email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Detailed studies of the stellar populations of intermediate-redshift galaxies can shed light onto the processes responsible for the significant evolution of the massive galaxy population since z < 1. We have undertaken such a study by means of deep rest-frame optical spectroscopy with IMACS on Magellan on a sample of ~80 galaxies selected from CDFS to have stellar masses > 1010M and redshift 0.65 < z < 0.75. We analyse stellar absorption line strengths and interpret them with a Monte Carlo library of star formation histories to derive constraints on mean stellar ages, metallicities and stellar masses. We present here the first characterization of the stellar mass–metallicity and stellar mass–age relations at z~0.7 and their evolution to the present-day.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Baldry, I. K., Glazebrook, K., Brinkmann, J., et al. 2004, ApJ, 600, 681CrossRefGoogle Scholar
Bell, E. F., McIntosh, D. H., Katz, N., et al. 2003, ApJS, 149, 289CrossRefGoogle Scholar
Bell, E. F., Wolf, C., Meisenheimer, K., et al. 2004, ApJ, 608, 752CrossRefGoogle Scholar
Bell, E. F., Papovich, C., Wolf, C., et al. 2005, ApJ, 625, 23CrossRefGoogle Scholar
Borch, A., Meisenheimer, K., Bell, E. F., et al. 2006, A&A, 453, 869Google Scholar
Brown, M. J. I., Dey, A., Jannuzi, B. T., et al. 2007, ApJ, 654, 858CrossRefGoogle Scholar
Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000CrossRefGoogle Scholar
Cappellari, M. & Emsellem, E. 2004, PASP, 116, 138CrossRefGoogle Scholar
Cool, R. J., Eisenstein, D. J., Fan, X., et al. 2008, ApJ, 682, 919CrossRefGoogle Scholar
Faber, S. M., Willmer, C. N. A., Wolf, C., et al. 2007, ApJ, 665, 265CrossRefGoogle Scholar
Gallazzi, A., Charlot, S., Brinchmann, J., et al. 2005, MNRAS, 362, 41CrossRefGoogle Scholar
Gallazzi, A., Charlot, S., Brinchmann, J., et al. 2006, MNRAS, 370, 1106CrossRefGoogle Scholar
Gallazzi, A., Brinchmann, J., Charlot, S., et al. 2008, MNRAS, 383, 1439CrossRefGoogle Scholar
Graves, G. J., Faber, S. M., & Schiavon, R. P. 2010, ApJ, 721, 278CrossRefGoogle Scholar
Hopkins, A. M. & Beacom, J. F. 2006, ApJ, 651, 142CrossRefGoogle Scholar
Kauffmann, G., Heckman, T. M., White, S. D. M., et al. 2003, MNRAS, 341, 54CrossRefGoogle Scholar
Pannella, M., Gabasch, A., Goranova, Y., et al. 2009, ApJ, 701, 787CrossRefGoogle Scholar
Sánchez-Blázquez, P., Jablonka, P., Noll, S., et al. 2009, A&A, 499, 47Google Scholar
Schiavon, R. P., Faber, S. M., Konidaris, N., et al. 2006, ApJ, 651, L93.CrossRefGoogle Scholar
Tremonti, C. A., Heckman, T. M., Kauffmann, G., et al. 2004, ApJ, 613, 898CrossRefGoogle Scholar
Wolf, C., Meisenheimer, K., Kleinheinrich, M., et al. 2004, A&A, 421, 913Google Scholar