Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T06:42:34.610Z Has data issue: false hasContentIssue false

Characterizing the Outburst of the Supermassive Black Hole in M87

Published online by Cambridge University Press:  07 April 2020

William Forman
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA, USA email: [email protected]
Eugene Churazov
Affiliation:
MPA, Karl-Schwarzschild Strasse 1, 85748 Garching bei Munchen, Germany Space Research Institute, 84/32 Profsoyuznaya Str, Moscow, Russia
Sebastian Heinz
Affiliation:
University of Wisconsin, 4506 Sterling Hall, Madison, WI53706USA
Christine Jones
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA, USA email: [email protected]
Paul Nulsen
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA, USA email: [email protected]
Ralph Kraft
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA, USA email: [email protected]
Scott Randall
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA, USA email: [email protected]
Alexey Vikhlinin
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA, USA email: [email protected] Space Research Institute, 84/32 Profsoyuznaya Str, Moscow, Russia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

M87, in the Virgo cluster, allows us to study the interaction of a supermassive black hole (SMBH) with its hot gaseous atmosphere. Deep Chandra observations reveal a nearly circular shock front with a Mach number of 1.2 and a radius of 13 kpc which is driven by a central cavity inflated by an SMBH outburst began 12 million years ago. An outburst with an energy of a ~5×57 ergs and a duration of ~2 Myrs provides a good match to all the constraints. For an outburst repetition rate of about 12 Myrs (the outburst age), the outburst energy is sufficient to balance the radiative cooling of the gas. The outburst duration in M87 argues for a “gentle” (long duration) outburst that does not generate strong shocks and where much of the outburst energy is deposited in the cavities that then transfer energy to the surrounding gas as they buoyantly rise.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Arévalo, P., Churazov, E., Zhuravleva, I., Forman, W. R., & Jones, C. 2016, ApJ, 818, 14CrossRefGoogle Scholar
Churazov, E., Forman, W., Jones, C., & Böhringer, H. 2000, A&A, 356, 788Google Scholar
Churazov, E., Brüggen, M., Kaiser, C. R., Böhringer, H., & Forman, W. 2001, ApJ, 554, 261CrossRefGoogle Scholar
Churazov, E., Sunyaev, R., Forman, W., & Böhringer, H. 2002, MNRAS, 332, 729CrossRefGoogle Scholar
Churazov, E., Sazonov, S., Sunyaev, R., et al. 2005, MNRAS, 363, L91CrossRefGoogle Scholar
Churazov, E., Arevalo, P., Forman, W., et al. 2016, MNRAS, 463, 1057CrossRefGoogle Scholar
Fabian, A. C., Sanders, J. S., Allen, S. W., et al. 2003, MNRAS, 344, L43CrossRefGoogle Scholar
Finoguenov, A., & Jones, C. 2001, ApJ, 547, L107CrossRefGoogle Scholar
Ford, H. C., Harms, R. J., Tsvetanov, Z. I., et al. 1994, ApJ, 435, L27CrossRefGoogle Scholar
Forman, W., Nulsen, P., Heinz, S., et al. 2005, ApJ, 635, 894CrossRefGoogle Scholar
Forman, W., Jones, C., Churazov, E., et al. 2007, ApJ, 665, 1057CrossRefGoogle Scholar
Forman, W., Churazov, E., Jones, C., et al. 2017, ApJ, 844, 122CrossRefGoogle Scholar
McNamara, B. R., Nulsen, P. E. J., Wise, M. W., et al. 2005, Nature, 433, 45CrossRefGoogle Scholar
Owen, F. N., Eilek, J. A., & Kassim, N. E. 2000, ApJ, 543, 611CrossRefGoogle Scholar
Vikhlinin, A., Reid, P., Tananbaum, H., et al. 2012, SPIE, 8443, 844316Google Scholar
Walsh, J. L., Barth, A. J., Ho, L. C., & Sarzi, M. 2013, ApJ, 770, 86CrossRefGoogle Scholar