Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T23:31:52.074Z Has data issue: false hasContentIssue false

Characterizing planetesimal belts through the study of debris dust

Published online by Cambridge University Press:  10 November 2011

Amaya Moro-Martín*
Affiliation:
Departamento de Astrofísica, CAB (CSIC-INTA), Instituto Nacional de Técnica Aeroespacial, Torrejón de Ardoz, 28850, Madrid, Spain email: [email protected] Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Main sequence stars are commonly surrounded by disks of dust. From lifetime arguments, it is inferred that the dust particles are not primordial but originate from the collision of planetesimals, similar to the asteroids, comets and KBOs in our Solar system. The presence of these debris disks around stars with a wide range of masses, luminosities, and metallicities, with and without binary companions, is evidence that planetesimal formation is a robust process that can take place under a wide range of conditions. Debris disks can help us learn about the formation, evolution and diversity of planetary systems.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Beichman, C. A., et al. 2005, ApJ, 626, 1061CrossRefGoogle Scholar
Booth, M., et al. 2009, MNRAS, 399, 385CrossRefGoogle Scholar
Bryden, G., et al. 2006, ApJ, 636, 1098CrossRefGoogle Scholar
Carpenter, J. M., et al. 2009, ApJS, 181, 197CrossRefGoogle Scholar
Dermott, S. F., et al. 1994, Nature, 369, 719CrossRefGoogle Scholar
Dermott, S. F., et al. 2002, Asteroids, Comets, and Meteors: ACM 2002, 500, 319Google Scholar
Gautier, T. N. III, et al. 2007, ApJ, 667, 527CrossRefGoogle Scholar
Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. 2005, Nature, 435, 466CrossRefGoogle Scholar
Gurnett, D. A., Ansher, J. A., Kurth, W. S., & Granroth, L. 1997, Geoph. R. Lett., 24, 3125CrossRefGoogle Scholar
Grün, B. A. S., et al. 2001 in: Grün, et al. (eds.), Interplanetary Dust (Springer), 295CrossRefGoogle Scholar
Hillenbrand, L. A., et al. 2008, ApJ, 677, 630CrossRefGoogle Scholar
Humes, D. 1980, J. Geophys. R., 85 (A/II), 5841CrossRefGoogle Scholar
Jessberger, E. K. 2001, in: Grün, et al. (eds.), Interplanetary Dust (Springer), 253CrossRefGoogle Scholar
Jewitt, D. C., Luu, J. X. 2000, in: Mannings, et al. (eds.), Protostars and Planets IV, 1201Google Scholar
Jura, M. 2006, ApJ, 653, 613CrossRefGoogle Scholar
Landgraf, M., Liou, J.-C., Zook, H. A., & Grün, E. 2002, AJ, 123, 2857CrossRefGoogle Scholar
Lisse, C. M., Beichman, C. A., Bryden, G., & Wyatt, M. C. 2007, ApJ, 658, 584CrossRefGoogle Scholar
Lovis, C., Mayor, M., Pepe, F., Alibert, Y., Benz, W., et al. 2006, Nature, 441, 305CrossRefGoogle Scholar
Meyer, M. R., et al. 2008, ApJL, 673, L181CrossRefGoogle Scholar
Morales, F. Y., et al. 2009, ApJ, 699, 1067CrossRefGoogle Scholar
Moro-Martín, A., et al. 2007, ApJ, 668, 1165CrossRefGoogle Scholar
Moro-Martín, A., et al. 2010, ApJ, 717, 1123CrossRefGoogle Scholar
Nesvorný, D., et al. 2010, ApJ, 713, 816CrossRefGoogle Scholar
Reach, W. T., Morris, P., Boulanger, F., & Okumura, K. 2003, Icarus, 164, 384CrossRefGoogle Scholar
Strom, R. G., Malhotra, R., Ito, T., Yoshida, F., & Kring, D. A. 2005, Science, 309, 1847CrossRefGoogle Scholar
Su, K. Y. L., et al. 2006, ApJ, 653, 675CrossRefGoogle Scholar
Sykes, M. V. & Greenberg, R. 1986, Icarus, 65, 51CrossRefGoogle Scholar
Trilling, D. E., et al. 2008, ApJ, 674, 1086CrossRefGoogle Scholar
Wyatt, M. C., et al. 2007, ApJ, 658, 569CrossRefGoogle Scholar