Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T04:47:04.213Z Has data issue: false hasContentIssue false

CH3NCO detections in observations and the laboratory

Published online by Cambridge University Press:  04 September 2018

N. F. W. Ligterink
Affiliation:
Sackler Laboratory, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
the PILS team
Affiliation:
Sackler Laboratory, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Methyl isocyanate (CH3NCO) belongs to a select group of peptide-like prebiotic molecules. In this paper we present its first detection toward the solar type low-mass protostar IRAS16293-2422 (hereafter IRAS16293). CH3NCO is detected towards IRAS16293 as a warm component with Tex > 100 K and HNCO/CH3NCO ∼4-12. Also, its grain surface formation route is investigated in the laboratory. VUV processing of CH4:HNCO mixtures, investigated by IR spectroscopy and mass spectrometry, revealed that it can be formed by reactions of CH3 and with (H)NCO. Observations and experiments strongly hint that methyl isocyanate is formed on interstellar dust grains.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Altwegg, K., Balsiger, H., Berthelier, J. J., et al. 2017, MNRAS, 469, S130Google Scholar
Belloche, A., Meshcheryakov, A. A., Garrod, R. T., et al. 2017, A&A, 601, A49Google Scholar
Bisschop, S. E., Jørgensen, J. K., Bourke, T. L., Bottinelli, S., & van Dishoeck, E. F., 2008, A&A, 488, 959Google Scholar
Bisschop, S. E., Jørgensen, J. K., van Dishoeck, E. F., & de Wachter, E. B. M., 2007, A&A, 465, 913Google Scholar
Bottinelli, S., Ceccarelli, C., Neri, R., et al. 2004, ApJ, 617, L69Google Scholar
Cazaux, S., Tielens, A. G. G. M., Ceccarelli, C., et al. 2003, ApJ, 593, L51Google Scholar
Cernicharo, J., Kisiel, Z., Tercero, B., et al. 2016, A&A, 587, L4Google Scholar
Coutens, A., Jørgensen, J. K., van der Wiel, M. H. D., et al. 2016, A&A, 590, L6Google Scholar
Goesmann, F., Rosenbauer, H., Bredehöft, J. H., et al. 2015, Science, 349Google Scholar
Halfen, D. T., Ilyushin, V. V., & Ziurys, L. M., 2015, ApJ, 812, L5Google Scholar
Henderson, B. L. & Gudipati, M. S., 2015, ApJ, 800, 66Google Scholar
Jaber, A. A., Ceccarelli, C., Kahane, C., & Caux, E., 2014, ApJ, 791, 29Google Scholar
Jørgensen, J. K., van der Wiel, M. H. D., Coutens, A., et al. 2016, A&A, 595, A117Google Scholar
Kuan, Y.-J., Huang, H.-C., Charnley, S. B., et al. 2004, ApJ, 616, L27Google Scholar
Ligterink, N. F. W., Coutens, A., Kofman, V., et al. 2017, MNRAS, 469, 2219Google Scholar
López-Sepulcre, A., Jaber, A. A., Mendoza, E., et al. 2015, MNRAS, 449, 2438Google Scholar
Reva, I., Lapinski, L., & Fausto, R., 2010, J. Mol. Struc., 976, 333341Google Scholar
Ruzi, M. & Anderson, D., 2012, J. Chem. Phys., 137, 194313Google Scholar
Sullivan, J., Heusel, H., Zunic, W., & Durig, J. 1994, Spectrochimica Acta, 50Google Scholar
van Dishoeck, E. F., Blake, G. A., Jansen, D. J., & Groesbeck, T. D., 1995, ApJ, 447, 760Google Scholar
Zhou, S. & Durig, J. 2009, J. Mol. Struc., 924Google Scholar