Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T15:02:07.308Z Has data issue: false hasContentIssue false

The Cartwheel galaxy as a stepping stone for binaries formation

Published online by Cambridge University Press:  30 December 2019

Anna Wolter
Affiliation:
INAF-Osservatorio Astronomico di Brera, Via Brera 28, I-20121 Milano, Italy email: [email protected]
Guido Consolandi
Affiliation:
INAF-Osservatorio Astronomico di Brera, Via Brera 28, I-20121 Milano, Italy email: [email protected] Universitá degli Studi di Milano Bicocca, Piazza dell’Ateneo Nuovo, 1, I-20126 Milano, Italy email: [email protected]
Marcella Longhetti
Affiliation:
INAF-Osservatorio Astronomico di Brera, Via Brera 28, I-20121 Milano, Italy email: [email protected]
Marco Landoni
Affiliation:
INAF-Osservatorio Astronomico di Brera, Via Brera 28, I-20121 Milano, Italy email: [email protected]
Andrea Bianco
Affiliation:
INAF-Osservatorio Astronomico di Brera, Via Brera 28, I-20121 Milano, Italy email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ultraluminous X-ray sources (ULXs) are end points of stellar evolution. They are mostly interpreted as binary systems with a massive donor. They are also the most probable progenitors for BH-BH, and even more, for BH-NS coalescence. Parameters of ULXs are not know and need to be better determined, in particular the link with the metallicity of the environment which has been invoked frequently but not proven strongly. We have tackled this problem by using a MUSE DEEP mosaic of the Cartwheel galaxy and applying a Monte Carlo code that jointly fits spectroscopy and photometry. We measure the metallicity of the emitting gas in the ring and at the positions of X-ray sources by constructing spatially resolved emission line ratio maps and BPT diagnostic maps. The Carthweel is the archetypal ring galaxy and the location and formation time of new stellar populations is easier to reconstruct than in more normal galaxies. It has the largest population of ULXs ever observed in a single galaxy (16 sources have been classified as ULXs in Chandra and XMM-Newton data). The Cartwheel galaxy is therefore the ideal laboratory to study the relation between Star Formation (SF Rates and SF History) and number of ULXs and also their final fate. We find that the age of the stellar population in the outer ring is consistent with being produced in the impact (≤300Myr) and that the metallicity is mostly sub-solar, even if solutions can be found with a solar metallicity that account for most observed properties. The findings for the Cartwheel will be a testbed for further modelisation of binary formation and evolution paths.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Amram, P., Mendes de Oliveira, C., Boulesteix, J. & Balkowski, C., 1998, A&A, 330, 881 Google Scholar
Bachetti, M. et al. 2014, Nature, 514, 202 10.1038/nature13791CrossRefGoogle Scholar
Bruzual, G., & Charlot, S., 2003, MNRAS, 344, 1000 10.1046/j.1365-8711.2003.06897.xCrossRefGoogle Scholar
Cappellari, M., & Emsellem, E. 2004, PASP, 116, 138 10.1086/381875CrossRefGoogle Scholar
Carpano, S., Haberl, F., Maitra, C. & Vasilopoulos, G., 2018, MNRAS, 476L, 45 10.1093/mnrasl/sly030CrossRefGoogle Scholar
Curti, M., Cresci, G., Mannucci, F., Marconi, A., Maiolino, R., & Esposito, S., MNRAS, 465, 1384 10.1093/mnras/stw2766CrossRefGoogle Scholar
Fabbiano, G., 1989, ARA&A, 27, 87 10.1146/annurev.aa.27.090189.000511CrossRefGoogle Scholar
Fosbury, R. A. E. & Hawarden, T. G., 1977, MNRAS, 178, 473 10.1093/mnras/178.3.473CrossRefGoogle Scholar
Fossati, M., et al., A&A, 2018, 614, 57 Google Scholar
Fürst, F., Walton, D. J., Stern, D., Bachetti, M., Barret, D., Brightman, M., Harrison, F. A. & Rana, V., 2016, ApJ, 834, 77 10.3847/1538-4357/834/1/77CrossRefGoogle Scholar
Grimm, H.-J., Gilfanov, M. & Sunyaev, R., 2003, MNRAS, 339, 793 10.1046/j.1365-8711.2003.06224.xCrossRefGoogle Scholar
Higdon, J. L., 1995, ApJ, 455, 524 10.1086/176602CrossRefGoogle Scholar
Higdon, J. L., 1996, ApJ, 467, 241 10.1086/177599CrossRefGoogle Scholar
Inoue, T., Tanaka, Y.T., & Isobe, N., 2016, MNRAS, 461, 4329 10.1093/mnras/stw1637CrossRefGoogle Scholar
Iovino, A., 2002, AJ, 124, 2471 10.1086/343059CrossRefGoogle Scholar
Israel, G. L. et al., 2017a, MNRAS, 466L, 48 10.1093/mnrasl/slw218CrossRefGoogle Scholar
Israel, G. L. et al., 2017b, Science, 355, 817 10.1126/science.aai8635CrossRefGoogle Scholar
Kauffmann, G., Heckman, T.M., Tremonti, C., et al. 2003, MNRAS, 346, 1055 10.1111/j.1365-2966.2003.07154.xCrossRefGoogle Scholar
Kewley, L.J., Dopita, M.A., Sutherland, R.S., Heisler, C.A., & Trevena, J. 2001, ApJ, 556, 121 10.1086/321545CrossRefGoogle Scholar
Linden, T., Kalogera, V., Sepinsky, J. F., Prestwich, A., Zezas, A. & Gallagher, J. S., 2010, ApJ, 725, 1984 10.1088/0004-637X/725/2/1984CrossRefGoogle Scholar
Mapelli, M., Colpi, M. & Zampieri, L., 2009, MNRAS, 395L, 71 10.1111/j.1745-3933.2009.00645.xCrossRefGoogle Scholar
Mapelli, M., Ripamonti, E., Zampieri, L., Colpi, M. & Bressan, A., 2010, MNRAS, 408, 234 10.1111/j.1365-2966.2010.17048.xCrossRefGoogle Scholar
Mapelli, M. & Mayer, L., MNRAS, 420, 1158 10.1111/j.1365-2966.2011.20098.xCrossRefGoogle Scholar
Renaud, F. et al., 2018, MNRAS, 473, 585 10.1093/mnras/stx2360CrossRefGoogle Scholar
Rich, J.A., Kewley, L.J., & Dopita, M.A. 2011, ApJ, 734, 87 10.1088/0004-637X/734/2/87CrossRefGoogle Scholar
Sarzi, M., Falcón-Barroso, J., Davies, R. L., et al. 2006, MNRAS, 366, 1151 10.1111/j.1365-2966.2005.09839.xCrossRefGoogle Scholar
Somers, G., Mathur, S., Martini, P., Watson, L., Grier, C.J. & Ferrarese, L., 2013, ApJ, 777, 7 10.1088/0004-637X/777/1/7CrossRefGoogle Scholar
Swartz, D. A., Soria, R., Tennant, A. F. & Yukita, M. ApJ, 741, 49 10.1088/0004-637X/741/1/49CrossRefGoogle Scholar
Vazdekis, A., Sánchez-Blázquez, P., Falcón-Barroso, J., et al. 2010, MNRAS, 404, 1639 Google Scholar
Wiktorowicz, G., Sobolewska, M., Lasota, J.-P. & Belczynski, K., 2017, ApJ, 846, 17 10.3847/1538-4357/aa821dCrossRefGoogle Scholar
Wolter, A. & Trinchieri, G, A&A, 426, 787 Google Scholar
Wolter, A., Esposito, P., Mapelli, M., Pizzolato, F. & Ripamonti, E., 2015, MNRAS, 448, 781 10.1093/mnras/stv054CrossRefGoogle Scholar
Wolter, A., Fruscione, A. & Mapelli, M., 2018 ApJ, 863, 43 10.3847/1538-4357/aacb34CrossRefGoogle Scholar
Wolter, A., Consolandi, G., Longhetti, M., Landoni, M. & Bianco, A., in preparationGoogle Scholar
Zezas, A., Fabbiano, G., Baldi, A., Schweizer, F., King, A. R., Rots, A. H. & Ponman, T. J., ApJ, 661, 135 10.1086/513091CrossRefGoogle Scholar