Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T22:46:58.611Z Has data issue: false hasContentIssue false

Can Massive Dark Haloes Destroy the Discs of Dwarf Galaxies?

Published online by Cambridge University Press:  01 June 2007

B. Fuchs
Affiliation:
Astronomisches Rechen-Institut am Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12 – 14, 69120 Heidelberg, Germany email: [email protected]
O. Esquivel
Affiliation:
Astronomisches Rechen-Institut am Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12 – 14, 69120 Heidelberg, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent high-resolution simulations together with theoretical studies of the dynamical evolution of galactic disks have shown that contrary to wide-held beliefs a ‘live’, dynamically responsive, dark halo surrounding a disk does not stabilize the disk against dynamical instabilities. We generalize Toomre's Q stability parameter for a disk-halo system and show that if a disk, which would be otherwise stable, is embedded in a halo, which is too massive and cold, the combined disk-halo system can become locally Jeans unstable. The good news is, on the other hand, that this will not happen in real dark haloes, which are in radial hydrostatic equilibrium. Even very low-mass disks are not prone to such dynamical instabilities.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Athanassoula, E. 2002 ApJ 569, L83CrossRefGoogle Scholar
Athanassoula, E. 2003 MNRAS 341, 1179CrossRefGoogle Scholar
Bahcall, J. N., & Soneira, R. M. 1980 ApJ 44, 73Google Scholar
Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton: Princeton University Press)Google Scholar
Dame, T. M. 1993, in: Holt, S. S. and Verter, F. (eds.), Back to the Galaxy, AIP Conf. Proc. Vol. 27, (Am. Inst. Phys., New York) p. 267Google Scholar
de Blok, W. J. G., McGaugh, S. S., & Rubin, V. C. 2001, AJ 122, 2396CrossRefGoogle Scholar
Esquivel, O., & Fuchs, B. 2007 A&A 468, 803Google Scholar
Fuchs, B. 2001 A&A 368, 107Google Scholar
Fuchs, B. 2004 A&A 419, 941Google Scholar
Fuchs, B., & Athanassoula, E. 2005, A&A 444, 455Google Scholar
Goldreich, P., & Lynden-Bell, D. 1965, MNRAS 130, 125CrossRefGoogle Scholar
Holmberg, J., & Flynn, C. 2004 MNRAS 352, 440CrossRefGoogle Scholar
Jahreiß, H., & Wielen, R. 1997, in: Battrick, B., Perryman, M.A.C. & Bernacca, P.L. (eds.), HIPPARCOS '97 (ESA SP-402, Noordwijk) p. 675Google Scholar
Julian, W. H., & Toomre, A. 1966 ApJ 146, 810CrossRefGoogle Scholar
Ostriker, P. J., & Peebles, J. P. E. 1973 ApJ 186, 467CrossRefGoogle Scholar
Toomre, A. 1964 ApJ 139, 1217CrossRefGoogle Scholar
Toomre, A. 1977 ARAA 15, 437CrossRefGoogle Scholar