Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T13:10:50.278Z Has data issue: false hasContentIssue false

The Bulge-disc connection in the Milky Way

Published online by Cambridge University Press:  01 June 2008

James Binney*
Affiliation:
Rudolf Peierls Centre for Theoretical Physics, Keble Road, Oxford OX1 3NP, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bulges come in two flavours – classical and pseudo. The principal characteristics of each flavour are summarised and their impact on discs is considered. Classical bulges probably inhibit the formation of stellar discs. Pseudobulges exchange angular momentum with stars and gas in their companion discs, and also with its embedding dark halo. Since the structure of a pseudobulge depends critically on its angular momentum, these exchanges are expected to modify the bulge. The consequences of this modification are not yet satisfactorily understood. The Galaxy has a pseudobulge. I review the manifestations of its interaction with the disc. More work is needed on the dynamics of gas near the bulge's corotation radius, and on tracing the stellar population in the inner few hundred parsecs of the Galaxy.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Athanassoula, E. 1992, MNRAS, 259, 328CrossRefGoogle Scholar
Athanassoula, E. 2003, MNRAS, 341, 1179CrossRefGoogle Scholar
Athanassoula, E. 2005, MNRAS, 358, 1477CrossRefGoogle Scholar
Benjamin, R. A., et al. 2005, ApJ, 630, L149CrossRefGoogle Scholar
Binney, J., Gerhard, O. E., Stark, A. A, Bally, J., & Uchida, K. I. 1991, MNRAS, 252, 210CrossRefGoogle Scholar
Binney, J., Gerhard, O. E., & Spergel, D. 1997, MNRAS, 288, 365CrossRefGoogle Scholar
Binney, J. & Merrifield, M. 1998, Galactic Astronomy (Princeton: Princeton University Press)Google Scholar
Binney, J. 2004, MNRAS, 347, 1093CrossRefGoogle Scholar
Binney, J. & Tremaine, S. 2008, Galactic Dynamics (Princeton: Princeton University Press)CrossRefGoogle Scholar
Bissantz, N. & Gerhard, O. E. 2002, MNRAS, 330, 591CrossRefGoogle Scholar
Block, D.L., Bournaud, F., Combes, F., Puerari, I. & Buta, R. 2002, A&A, 394, L35Google Scholar
Combes, F. & Sanders, R. H. 1981, A&A, 96, 164Google Scholar
Bournaud, F. & Combes, F. 2002, A&A, 392, 83Google Scholar
Bureau, M., Athanassoula, E., & Barbuy, B. 2008, Proc.Intl.Astron.U., 3, IAU Symp. 245Google Scholar
Buta, R. & Combes, F. 1996, FCPh, 17, 95Google Scholar
Cabrera-Lavers, A., Hammersley, P. L., González-Fernández, C., López-Corredoira, M., Garzón, F., & Mahoney, T. J. 2007, A&A, 465, 825Google Scholar
Cappellari, M., & the SAURON collaboration, 2007, MNRAS, 379, 418CrossRefGoogle Scholar
Dame, T. M., Hartmann, Dap., & Thaddeus, P. 2001, ApJ, 547, 792CrossRefGoogle Scholar
Dame, T. M. & Thaddeus, P. 2008, ApJL, in press (arXiv:0807.1752)Google Scholar
Debattista, V. P. & Sellwood, J. A. 1998, ApJ, 493, L5CrossRefGoogle Scholar
Dehnen, W. 2000, AJ, 119, 800CrossRefGoogle Scholar
Englmaier, P. & Gerhard, O. 1999, MNRAS, 304, 512CrossRefGoogle Scholar
Ferrière, K., Gillard, W. & Jean, P. 2007, A&A, 467, 611Google Scholar
Friedli, D. & Benz, W., A&A, 268, 65Google Scholar
Fux, R. 1999, A&A, 345, 787Google Scholar
Hammersley, P. L., Garzon, F., Mahoney, T. J., Lopez-Corredoira, M., & Torres, M. A. P. 2000, MNRAS, 317, L45CrossRefGoogle Scholar
Hasan, H. & Norman, C. A. 1990, ApJ, 361, 69CrossRefGoogle Scholar
Haywood, M. 2008, arXiv:0805.1822Google Scholar
Kalnajs, A. 1991, in “Dynamics of Disc Galaxies”, ed. Sundelius, B. (Göteborg: Dept of Astron. Astrophys., Göteborg Univ.), 323Google Scholar
Kormendy, J. & Kennicutt, R. 2004, ARA&A, 42, 603Google Scholar
LaRosa, T. N., Kassim, N. E., Lazio, T. J. W., & Hyman, S. D., 2000, AJ, 119, 207CrossRefGoogle Scholar
Liszt, H. S. & Burton, W. B. 1980, ApJ, 236, 779CrossRefGoogle Scholar
McWilliam, A. & Rich, R. M. 1994, ApJS, 91, 749CrossRefGoogle Scholar
Meléndez, J., et al. 2008, A&A, 484, L21Google Scholar
Nipoti, C. & Binney, J. 2007, MNRAS, 382, 1481CrossRefGoogle Scholar
Pfenniger, D. & Friedli, D. 1991, A&A, 252, 75Google Scholar
Raboud, D., Grenon, M., Martinet, L., Fux, R. & Udry, S. 1998, A&A, 335, L61Google Scholar
Raha, N., Sellwood, J. A., James, R. A. & Kahn, F. D., Nature, 352, 411CrossRefGoogle Scholar
Rix, H.-S. & White, S. D. M. 1990, ApJ, 362, 52CrossRefGoogle Scholar
Rubin, V. C., Graham, J. A., & Kenney, J. D. P. 1992, ApJ, 394, L9CrossRefGoogle Scholar
Sellwood, J. A. & Kahn, F. 1991, MNRAS, 250, 278CrossRefGoogle Scholar
Sellwood, J. A. & Sparke, L. S. 1988, MNRAS, 231, P25CrossRefGoogle Scholar
Stanek, K. Z., Udalski, A., Szymanski, M., Kaluzny, J., Kubiak, M., Mateo, M. & Krezeminski, W. 1997, ApJ, 477, 163CrossRefGoogle Scholar
van Woerden, H., Rougoor, G. W., & Oort, J. H. 1957, Comp. Rend., 244, 1691Google Scholar
Weinberg, M. D. & Tremaine, S. 1984, MNRAS, 209, 729Google Scholar
Zoccali, M., et al. 2006, A&A, 457, L1Google Scholar