Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T02:52:34.717Z Has data issue: false hasContentIssue false

The build-up of the outskirts of distant star-forming galaxies at z ~ 2

Published online by Cambridge University Press:  21 March 2017

Sandro Tacchella
Affiliation:
Institute of Astronomy, ETH Zurich, CH-8093 Zurich, Switzerland email: [email protected]
C. Marcella Carollo
Affiliation:
Institute of Astronomy, ETH Zurich, CH-8093 Zurich, Switzerland email: [email protected]
Avishai Dekel
Affiliation:
Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
Natascha Förster Schreiber
Affiliation:
Max Planck Institut für Extraterrestrische Physik, D-85741, Garching, Germany
Alvio Renzini
Affiliation:
INAF Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In order to constrain – and understand – the growth of galaxies, we present a sample of ~ 30 galaxies at z ~ 2 with resolved distribution of stellar mass, star-formation rate, and dust attenuation on scales of ~ 1 kpc. We find that low- and intermediate-mass galaxies grow self-similarly, doubling their stellar mass in the centers and outskirts with the same pace. More massive galaxies (~ 1011 M) have a reduced star-formation activity in their center: they grow mostly in the outskirts (inside-out quenching / formation). Similar trends are find in cosmological zoom-in simulations, highlighting that high stellar mass densities are formed in a gas-rich compaction phase. This nuclear ‘starburst’ phase is followed by a suppressed star-formation activity in the center, resulting in growth of the outskirts. All in all, we put forward that we witness at z ~ 2 the dissipative formation of z = 0 M* early-type galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Brinchmann, J., Charlot, S., White, S. D. M., et al. 2004, MNRAS, 351, 1151 Google Scholar
Ceverino, D., Klypin, A., Klimek, E. S., et al. 2014, MNRAS, 442, 1545 Google Scholar
Dekel, A. & Burkert, A. 2014, MNRAS, 438, 1870 CrossRefGoogle Scholar
Förster Schreiber, N. M., Genzel, R., Newman, S. F., et al. 2014, ApJ, 787, 38 Google Scholar
Genzel, R., Förster Schreiber, N. M., Lang, P., et al. 2014a, ApJ, 785, 75 Google Scholar
Ilbert, O., McCracken, H. J., Le Fèvre, O., et al. 2013, A&A, 556, 55 Google Scholar
Muzzin, A., Marchesini, D., Stefanon, M., et al. 2013, ApJ, 777, 18 Google Scholar
Noeske, K. G., Weiner, B. J., Faber, S. M., et al. 2007, ApJL, 660, L43 Google Scholar
Peng, Y.-j., Lilly, S. J., Kovac, K., et al. 2010, ApJ, 721, 193 CrossRefGoogle Scholar
Renzini, A. 2009, MNRAS, 398, L58 Google Scholar
Speagle, J. S., Steinhardt, C. L., Capak, P. L., & Silverman, J. D. 2014, ApJS, 214, 15 Google Scholar
Tacchella, S., Lang, P., Carollo, C. M., et al. 2015a, ApJ, 802, 101 Google Scholar
Tacchella, S., Carollo, C. M., Renzini, A., et al. 2015b, Science, 348, 314 CrossRefGoogle Scholar
Tacchella, S., Dekel, A., Carollo, C. M., et al. 2016a, MNRAS, 458, 242 Google Scholar
Tacchella, S., Dekel, A., Carollo, C. M., et al. 2016b, MNRAS, 457, 2790 Google Scholar
Zolotov, A., Dekel, A., Mandelker, N., et al. 2012, MNRAS, 450, 2327 Google Scholar