Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T13:34:53.807Z Has data issue: false hasContentIssue false

Building a numerical relativistic non-ideal magnetohydrodynamics code for astrophysical applications

Published online by Cambridge University Press:  07 August 2014

S. Miranda Aranguren
Affiliation:
Departament d'Astronomia i AstrofisicaUniversitat de Valencia, E-46100 Burjassot (Valencia)Spains email: [email protected]
M. A. Aloy
Affiliation:
Departament d'Astronomia i AstrofisicaUniversitat de Valencia, E-46100 Burjassot (Valencia)Spains email: [email protected]
Carmen. Aloy
Affiliation:
Departament d'Astronomia i AstrofisicaUniversitat de Valencia, E-46100 Burjassot (Valencia)Spains email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Including resistive effects in relativistic magnetized plasmas is a challenging task, that a number of authors have recently tackled employing different methods. From the numerical point of view, the difficulty in including non-ideal terms arises from the fact that, in the limit of very high plasma conductivity (i.e., close to the ideal MHD limit), the system of governing equations becomes stiff, and the standard explicit integrating methods produce instabilities that destroy the numerical solution. To deal with such a difficulty, we have extended the relativistic MHD code MR-GENESIS, to include a number of Implicit Explicit Runge-Kutta (IMEX-RK) numerical methods. To validate the implementation of the IMEX-RK schemes, two standard tests are presented in one and two spatial dimensions, covering different conductivity regimes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Aloy, M. A., et al. 1999, ApJS, 122, 151Google Scholar
Anton, L., et al. 2010, ApJS, 188, 1Google Scholar
Bucciantini, N., Del Zanna, L. 2013, MNRAS, 428, 71Google Scholar
Dedner, A., et al. 2002, J. Comput. Phys., 175, 645Google Scholar
Higueras, I., et al. 2012, ASC Report No. 14/2012Google Scholar
Komissarov, S. S. 2007, MNRAS, 382, 995Google Scholar
Leismann, T.et al. 2005, Astron. Astroph., 436 503Google Scholar
Palenzuela, C., et al. 2009, MNRAS, 394, 1727CrossRefGoogle Scholar
Pareschi, L., et al. 2005, J. Sci. Comput., 25, 112Google Scholar