Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T16:13:36.937Z Has data issue: false hasContentIssue false

Brown dwarf jets: Investigating the universality of jet launching mechanisms at the lowest masses

Published online by Cambridge University Press:  24 February 2011

Emma Teresa Whelan
Affiliation:
Laboratoire d'Astrophysique de Grenoble, UMR 5571, BP 53, 38041 Grenoble Cedex 09, France email: [email protected]
Francesca Bacciotti
Affiliation:
INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy, Box 515, SE-75120 Uppsala, Sweden email: [email protected]
Tom Ray
Affiliation:
Dublin Institute for Advanced Studies, Ireland email: [email protected]
Catherine Dougados
Affiliation:
Laboratoire d'Astrophysique de Grenoble, UMR 5571, BP 53, 38041 Grenoble Cedex 09, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recently it has become apparent that proto-stellar-like outflow activity extends to the brown dwarf (BD) mass regime. While the presence of accretion appears to be the common ingredient in all objects known to drive jets fundamental questions remain unanswered. The more prominent being the exact mechanism by which jets are launched, and whether this mechanism remains universal among such a diversity of sources and scales. To address these questions we have been investigating outflow activity in a sample of protostellar objects that differ considerably in mass and mass accretion rate. Central to this is our study of brown dwarf jets. To date Classical T Tauri stars (CTTS) have offered us the best touchstone for decoding the launching mechanism. Here we shall summarise what is understood so far of BD jets and the important constraints observations can place on models. We will focus on the comparison between jets driven by objects with central mass <0.1M and those driven by CTTSs. In particular we wish to understand how the the ratio of the mass outflow to accretion rate compares to what has been measured for CTTSs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bacciotti, F., Eislöffel, J., & Ray, T. P. 1999, A&A, 350, 917Google Scholar
Barrado, yNavascués, D., Mohanty, S. & Jayawardhana, R. 2004, ApJ, 604, 284Google Scholar
Camenzind, M. 2005, Memorie della Societa Astronomica Italiana, 76, 98Google Scholar
Chauvin, G., Lagrange, A.-M., Dumas, C., Zuckerman, B., Mouillet, D., Song, I., Beuzit, J.-L., & Lowrance, P. 2005, A&A, 438, L25Google Scholar
Comerón, F., Fernández, M., Baraffe, I., Neuhäuser, R., & Kaas, A. A. 2003, A&A, 406, 1001Google Scholar
Dougados, C., Cabrit, S., Lavalley, C., & Ménard, F. 2000, A&A, 357, L61Google Scholar
Fernández, M. & Comerón, F. 2001, A&A, 380, 264Google Scholar
Gatti, T., Testi, L., Natta, A., Randich, S., & Muzerolle, J. 2006, A&A, 460, 547Google Scholar
Hartigan, P., Edwards, S., & Ghandour, L. 1995, ApJ, 452, 736CrossRefGoogle Scholar
Herczeg, G. J., Cruz, K. L., & Hillenbrand, L. A. 2009, ApJ, 696, 1589Google Scholar
Lada, C. J. 1987, Star Forming Regions, 115, 1Google Scholar
Mohanty, S., Jayawardhana, R., & Basri, G. 2004, ApJ, 609, 885Google Scholar
Mohanty, S., Jayawardhana, R. & Basri, G. 2005, ApJ, 626, 498Google Scholar
Mohanty, S., Jayawardhana, R., Huélamo, N., & Mamajek, E. 2007, ApJ, 657, 1064Google Scholar
Muzerolle, J., Luhman, K. L., Briceño, C., Hartmann, L., & Calvet, N. 2005, ApJ, 625, 906CrossRefGoogle Scholar
Natta, A., Testi, L., Comerón, F., Oliva, E., D'Antona, F., Baffa, C., Comoretto, G., & Gennari, S. 2002, A&A, 393, 597Google Scholar
Natta, A., Testi, L., Muzerolle, J., Randich, S., Comerón, F., & Persi, P. 2004, A&A, 424, 603Google Scholar
Natta, A., Testi, L., & Randich, S. 2006, A&A, 452, 245Google Scholar
Pascucci, I., Apai, D., Luhman, K., Henning, T., Bouwman, J., Meyer, M. R., Lahuis, F., & Natta, A. 2009, ApJ, 696, 143Google Scholar
Phan-Bao, N., et al. 2008, ApJL, 689, L141Google Scholar
Ray, T., Dougados, C., Bacciotti, F., Eislöffel, J., & Chrysostomou, A. 2007, Protostars and Planets V, 231Google Scholar
Reipurth, B. & Bally, J. 2001, A&AR, 39, 403Google Scholar
Scholz, A., & Jayawardhana, R. 2006, ApJ, 638, 1056Google Scholar
Stahler, S. W. 1983, ApJ, 274, 822Google Scholar
Whelan, E. T., Ray, T. P., Bacciotti, F., Natta, A., Testi, L. & Randich, S. 2005, Nature, 435, 652Google Scholar
Whelan, E. T., Ray, T. P., Bacciotti, F. & Jayawardhana, R. 2006, New Astronomy Review, 49, 582CrossRefGoogle Scholar
Whelan, E. T., Ray, T. P., Randich, S., Bacciotti, F., Jayawardhana, R., Testi, L., Natta, A. & Mohanty, S. 2007, ApJL, 659, L45Google Scholar
Whelan, E. & Garcia, P. 2008, Lecture Notes in Physics, Berlin Springer Verlag, 742, 123Google Scholar
Whelan, E. T., Ray, T. P., & Bacciotti, F. 2009, ApJL, 691, L106Google Scholar
Whelan, E. T., Ray, T. P., Podio, L., Bacciotti, F., & Randich, S. 2009, ApJ, 706, 1054Google Scholar