Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T02:42:14.876Z Has data issue: false hasContentIssue false

Boron abundances in diffuse interstellar clouds

Published online by Cambridge University Press:  23 April 2010

Adam M. Ritchey
Affiliation:
Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA email: [email protected], [email protected], [email protected]
S. R. Federman
Affiliation:
Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA email: [email protected], [email protected], [email protected]
Y. Sheffer
Affiliation:
Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA email: [email protected], [email protected], [email protected]
D. L. Lambert
Affiliation:
W.J. McDonald Observatory, University of Texas at Austin, 1 University Station, Austin, TX 78712, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a comprehensive survey of B abundances in diffuse interstellar clouds from HST/STIS observations along 56 Galactic sight lines. Our sample is the result of a complete search of archival STIS data for the B II λ1362 resonance line, with each detection confirmed by the presence of absorption from other dominant ions at the same velocity. The data probe a range of astrophysical environments including both high-density regions of massive star formation as well as low-density paths through the Galactic halo, allowing us to clearly define the trend of B depletion onto interstellar grains as a function of gas density. Many extended sight lines exhibit complex absorption profiles that trace both local gas and gas associated with either the Sagittarius-Carina or Perseus spiral arm. Our analysis indicates a higher B/O ratio in the inner Sagittarius-Carina spiral arm than in the vicinity of the Sun, which may suggest that B production in the current epoch is dominated by a secondary process. The average gas-phase B abundance in the warm diffuse ISM [log ϵ(B) = 2.38±0.10] is consistent with the abundances determined for a variety of Galactic disk stars, but is depleted by 60% relative to the solar system value. Our survey also reveals sight lines with enhanced B abundances that potentially trace recent production of 11B either by cosmic-ray or neutrino-induced spallation. Such sight lines will be key to discerning the relative importance of the two production routes for 11B synthesis.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Acciari, V. A., Aliu, E., Arlen, T., & VERITAS Collaboration. 2009, ApJ, 698, L133CrossRefGoogle Scholar
Boesgaard, A. M. & Heacox, W. D. 1978, ApJ, 226, 888CrossRefGoogle Scholar
Cunha, K. & Smith, V. V. 1999, ApJ, 512, 1006CrossRefGoogle Scholar
Cunha, K., Smith, V. V., Boesgaard, A. M., & Lambert, D. L. 2000a, ApJ, 530, 939CrossRefGoogle Scholar
Cunha, K., Smith, V. V., Parizot, E., & Lambert, D. L. 2000b, ApJ, 543, 850CrossRefGoogle Scholar
Diplas, A. & Savage, B. D. 1994, ApJS, 93, 211CrossRefGoogle Scholar
Federman, S. R., Lambert, D. L., Cardelli, J. A., & Sheffer, Y. 1996a, Nature, 381, 764CrossRefGoogle Scholar
Federman, S. R., Weber, J., & Lambert, D. L. 1996b, ApJ, 463, 181CrossRefGoogle Scholar
Howk, J. C., Sembach, K. R., & Savage, B. D. 2000, ApJ, 543, 278CrossRefGoogle Scholar
Indriolo, N., Geballe, T. R., Oka, T., & McCall, B. J. 2007, ApJ, 671, 1736CrossRefGoogle Scholar
Jenkins, E. B., Savage, B. D., & Spitzer, L. 1986, ApJ, 301, 355CrossRefGoogle Scholar
Jura, M., Meyer, D. M., Hawkins, I., & Cardelli, J. A. 1996, ApJ, 456, 598CrossRefGoogle Scholar
Knauth, D. C., Federman, S. R., Lambert, D. L., & Crane, P. 2000a, Nature, 405, 656CrossRefGoogle Scholar
Knauth, D. C., Federman, S. R., Lambert, D. L., & Crane, P. 2000b, in: da Silva, L., Spite, M. & de Medeiros, J. R. (eds.), The Light Elements and Their Evolution, Proc. IAU Symposium No. 198 (San Francisco: ASP), p. 338Google Scholar
Knauth, D. C., Federman, S. R., & Lambert, D. L. 2003, ApJ, 586, 268CrossRefGoogle Scholar
Lambert, D. L., Sheffer, Y., Federman, S. R., Cardelli, J. A., Sofia, U. J., & Knauth, D. C. 1998, ApJ, 494, 614CrossRefGoogle Scholar
Lodders, K. 2003, ApJ, 591, 1220CrossRefGoogle Scholar
Meneguzzi, M., Audouze, J., & Reeves, H. 1971, A&A, 15, 337Google Scholar
Meneguzzi, M. & York, D. G. 1980, ApJ, 235, L111CrossRefGoogle Scholar
Pan, K., Federman, S. R., Cunha, K., Smith, V. V., & Welty, D. E. 2004, ApJS, 151, 313CrossRefGoogle Scholar
Ramaty, R., Kozlovsky, B., Lingenfelter, R. E., & Reeves, H. 1997, ApJ, 488, 730CrossRefGoogle Scholar
Ritchey, A. M., Federman, S. R., Sheffer, Y., & Lambert, D. L. 2010, in preparationGoogle Scholar
Sheffer, Y., Rogers, M., Federman, S. R., Abel, N. P., Gredel, R., Lambert, D. L., & Shaw, G. 2008, ApJ, 687, 1075CrossRefGoogle Scholar
Snow, T. P. & Witt, A. N. 1996, ApJ, 468, L65CrossRefGoogle Scholar
Sofia, U. J. & Meyer, D. M. 2001, ApJ, 554, L221CrossRefGoogle Scholar
Spitzer, L. 1985, ApJ, 290, L21CrossRefGoogle Scholar
Venn, K. A., Brooks, A. M., Lambert, D. L., Lemke, M., Langer, N., Lennon, D. J., & Keenan, F. P. 2002, ApJ, 565, 571CrossRefGoogle Scholar
Walborn, N. R., Smith, N., Howarth, I. D., Kober, G. V., Gull, T. R., & Morse, J. A. 2007, PASP, 119, 156CrossRefGoogle Scholar
Welty, D. E. & Hobbs, L. M. 2001, ApJS, 133, 345CrossRefGoogle Scholar
Welty, D. E., Morton, D. C., & Hobbs, L. M. 1996, ApJS, 106, 533CrossRefGoogle Scholar
Woosley, S. E., Hartmann, D. H., Hoffman, R. D., & Haxton, W. C. 1990, ApJ, 356, 272CrossRefGoogle Scholar