Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T11:49:29.620Z Has data issue: false hasContentIssue false

Bootstrap energization of relativistic electrons in magnetized plasmas

Published online by Cambridge University Press:  01 September 2008

Ilan Roth*
Affiliation:
Space Sciences, University of California at Berkeley, Berkeley, CA 94720, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In situ and remote observations indicate that relativistic or ultra relativistic electrons are formed at various magnetized configurations. It is suggested that a specific bootstrap mechanism operates in some of these environments. The mechanism applies to (a) relativistic electrons observed on localized field lines in outer radiation belt - through a process initiated at a distant substorm injection; (b) relativistic electrons observed at the interplanetary medium - through a process initiated via coronal injection, at large distances from flares or propagating CME; (c) ultra-relativistic electrons deduced at the galactic jets - through a process initiated via local injection at the small-scale magnetic field. The injected nonisotropic electrons excite whistler waves which boost efficiently the tail of the electron distribution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Baker, D, et al. , 1986, Jour. Geoph. Res., 91, 4265Google Scholar
Blandford, R. D. & Payne, D. G., 1982 MNRAS, 199, 883CrossRefGoogle Scholar
Bortnik, J., Inan, U. S., & Bell, T. F., 2006, Geoph. Res. Lett., 33, 3102CrossRefGoogle Scholar
Cattell, C. et al. , 2008, Geoph. Res. Lett, 35, L01105CrossRefGoogle Scholar
Fendt, C. & Memola, E., 2001, Astronomy & Astrophysics, 365, 631.Google Scholar
Fleishman, G. D., 2006, Ap. Jour., 638, 348.Google Scholar
Frederiksen, J. T. et al. , 2004, Astrophys. J., 608, L13Google Scholar
Haggerty, D. K. et al. , 2003, Adv, Space. Res., 32, 2673CrossRefGoogle Scholar
Jester, S. et al. , 2004, Astronomy & Astrophysics, 431, 477.CrossRefGoogle Scholar
Kimura, I., 1966, Radio Sci., 1, 269Google Scholar
Kimura, I., 1985, Space Sci. Rev., 42, 449Google Scholar
Klassen, et al. , 2005, Jour. Geoph. Res., 110, AO9S04Google Scholar
Krucker, S. et al. , 1999, Astrophys. J., 519, 864CrossRefGoogle Scholar
Lin, R. P., Sol. Phys., 100, 519, 1985.Google Scholar
Maia, D. J. F. & Pick, M., Astrophys. J., 609, 1082, 2004.CrossRefGoogle Scholar
Medvedev, M. V., Astrophys. J., 540, 704 2000.CrossRefGoogle Scholar
Meisenheimer, K. & Heavens, A. F., 1986, Nature, 323, 419CrossRefGoogle Scholar
Meredith, N. et al. , Geoph. Res. Lett., 30, 1871, 2003.Google Scholar
Nishikawa, , et al. , 2005, Astrophys. J., 622, 927, 2005.CrossRefGoogle Scholar
Omura, Y., Katoh, Y., & Summers, D., Jour. Geoph. Res., 113, AO4223, 2008.Google Scholar
Pick, M. & Maia, D. J. F., Adv, Space Res, 35, 1876, 2005.CrossRefGoogle Scholar
Reeves, G. D., et al. , Geoph. Res. Lett., 30, 1529, 2003.CrossRefGoogle Scholar
Roth, I., Temerin, M., & Hudson, M. K., Annales Geophysicae, 17, 631, 1999.CrossRefGoogle Scholar
Roth, I, Jour. Atm. Sol. Terr. Phys., 70, 490, 2008.CrossRefGoogle Scholar
Shklyar, D. R., Chum, J., & Jiricek, F., Ann. Geoph., 22, 3589, 2004.CrossRefGoogle Scholar
Wang, L., Lin, R. P., Krucker, S., & Gosling, J. T., Geoph. Res. Lett., 33, L03106, 2006.Google Scholar