Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T01:30:09.589Z Has data issue: false hasContentIssue false

Blue Luminescence and Extended Red Emission: Possible Connections to the Diffuse Interstellar Bands

Published online by Cambridge University Press:  21 February 2014

A. N. Witt*
Affiliation:
Ritter Astrophysical Research Center, University of Toledo, Toledo, OH 43606, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Blue luminescence (BL) and extended red emission (ERE) are observed as diffuse, optical-wavelength emissions in interstellar space, resulting from photoluminescence by ultraviolet(UV)-illuminated interstellar grains. Faintness and the challenge of separating the BL and ERE from the frequently much brighter dust-scattered continuum present major observational hurdles, which have permitted only slow progress in testing the numerous models that have been advanced to explain these two phenomena. Both the ERE, peaking near 680 nm (FWHM ~ 60 - 120 nm) and the BL, asymmetrically peaking at ~ 378 nm (FWHM ~ 45 nm), were first discovered in the Red Rectangle nebula. Subsequently, ERE and BL have been observed in other reflection nebulae, and in the case of the ERE, in carbon-rich planetary nebulae, H II regions, high-latitude cirrus clouds, the galactic diffuse ISM, and in external galaxies. BL exhibits a close spatial and intensity correlation with emission in the aromatic emission feature at 3.3 micron, most likely arising from small, neutral polycyclic aromatic hydrocarbon (PAH) molecules. The spectral characteristics of the BL also agree with those of fluorescence by PAH molecules with 13 to 19 carbon atoms. The BL phenomenon is thus most readily understood as the optical fluorescence of small, UV-excited aromatic molecules. The ERE, by contrast, though co-existent with mid-IR PAH emissions, does not correlate with emissions from either neutral or ionized PAHs. Instead, the spatial ERE morphology appears to be strictly governed by the density of far-UV (E ≥ 10.5 eV) photons, which are required for the ERE excitation. The most restrictive observational constraint for the ERE process is its exceptionally high quantum efficiency. If the ERE results from photo-excitation of a nano-particle carrier by photons with E ≥ 10.5 eV in a single-step process, the quantum efficiency exceeds 100%. Such a process, in which one to three low-energy optical photons may be emitted following a single far-UV excitation, is possible in highly isolated small clusters, e.g. small, dehydrogenated carbon clusters with about 20 to 28 carbon atoms. A possible connection between the ERE carriers and the carriers of DIBs may exist in that both are ubiquitous throughout the diffuse interstellar medium and both have an abundance of low-lying electronic levels with E ≤ 2.3 eV above the ground state.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Cohen, M., et al. 1975, ApJ, 196, 179Google Scholar
Bakes, E. L. O., Tielens, A. G. G. M., & Bauschlicher, C. W. Jr. 2001, ApJ, 556, 501CrossRefGoogle Scholar
Berné, O., Joblin, C., Rapacioli, M., Thomas, J, Cuillandre, J.-C., & Deville, Y. 2008, A&A, 479, L41Google Scholar
Bregman, J. D., Rank, D., Temi, P., Hudgins, D., & Kay, L. 1993, ApJ, 411, 794Google Scholar
Darbon, S., Perrin, J.-M., & Sivan, J.-P. 1998, A&A, 333, 264Google Scholar
Darbon, S., Perrin, J.-M., & Sivan, J.-P. 1999, A&A, 348, 990Google Scholar
Darbon, S., Zavagno, A., Perrin, J.-M., Savine, C., Ducci, V., & Sivan, J.-P. 2000, A&A, 364, 723Google Scholar
Duley, W. W. 2009, ApJ, 705, 446Google Scholar
Furton, D. G. & Witt, A. N. 1990, ApJ, 364, L45Google Scholar
Furton, D. G. & Witt, A. N. 1992, ApJ, 386, 587CrossRefGoogle Scholar
Glinski, R. J. & Anderson, C. M. 2002, MNRAS, 332, L17CrossRefGoogle Scholar
Godard, M. & Dartois, E. 2010, A&A, 519, A39Google Scholar
Gordon, K. D., Witt, A. N., & Friedmann, B. C. 1998, ApJ, 498, 522CrossRefGoogle Scholar
Guhathakurta, P. & Tyson, J. A. 1989, ApJ, 346, 773Google Scholar
Hobbs, L. M., et al. 2008, ApJ, 680, 1256Google Scholar
Hobbs, L. M., et al. 2009, ApJ, 705, 32Google Scholar
Iglesias-Groth, S. 2008, Organic Matter in Space, IAU Symp. 251, 57Google Scholar
Ienaka, N., et al. 2013, ApJ, 767, 80CrossRefGoogle Scholar
Jones, R. O. 1999, J. Chem. Phys., 110, 5189Google Scholar
Kerr, T. H., Hurst, M. E., Miles, J. R., & Sarre, P. J. 1999, MNRAS, 303, 446CrossRefGoogle Scholar
Kurth, M., Witt, A. N., Vijh, U. P., & Barnes, F. S. 2013, AAS Mtg. #221, #440.06Google Scholar
Ledoux, G., et al. 1998, A&A, 333, L39Google Scholar
Léger, A., Boissel, P. & d'Hendecourt, L. 1988, PRL, 60, 921CrossRefGoogle Scholar
LePage, V., Snow, T. P., & Bierbaum, V. 2003, ApJ, 584, 316Google Scholar
Mathis, J. S., Mezger, P. G., & Panagia, N. 1983, A&A, 128, 212Google Scholar
Matsuoka, Y., Ienaka, N., Kawara, K., & Oyabu, S. 2011, ApJ, 736, 119Google Scholar
Montillaud, J., Joblin, C., & Toublanc, D. 2013, A&A, 552, A15Google Scholar
Mulas, G., Malloci, G., & Benvenuti, P. 2003, A&A, 410, 639Google Scholar
Nitzan, A. & Fortner, J. 1979, J. Chem. Phys., 71, 3524Google Scholar
Perrin, J.-M. & Sivan, J.-P. 1992, A&A, 255, 271Google Scholar
Perrin, J.-M. & Sivan, J.-P. 1995, A&A, 304, L21Google Scholar
Pierini, D., Majeed, A., Boroson, T., & Witt, A. N. 2002, ApJ, 569, 184Google Scholar
Rhee, Y. M., Lee, T. J., Gudipati, M. S., Allamandola, L. J. & Head-Gordon, M. 2007, PNAS, 104, 5274Google Scholar
Sakata, A., et al. 1992, ApJ, 393, L83Google Scholar
Salama, F. & Allamandola, L. 1994, The First Symposium on the Infrared Cirrus and Diffuse Interstellar Clouds, ASP. Conf. Ser. 58, Cutri, R. M. & Latter, W. B., Eds., 279Google Scholar
Scarrott, S. M., Watkin, S., Miles, J. R., & Sarre, P. J. 1992, MNRAS, 255, 11CrossRefGoogle Scholar
Schmidt, G. D., Cohen, M., & Margon, B. 1980, ApJ, 239, L133Google Scholar
Schmidt, D. D. & Witt, A. N. 1991, ApJ, 383, 698Google Scholar
Seab, C. G. & Snow, T. P. 1984, ApJ, 277, 200CrossRefGoogle Scholar
Smith, T. L. & Witt, A. N. 2002, ApJ, 565, 304CrossRefGoogle Scholar
Snow, T. P. & Witt, A. N. 1995, Science, 270, 1455Google Scholar
Snow, T. P. & Witt, A. N. 1996, ApJ, 468, L65Google Scholar
Szomoru, A. & Guhathakurta, P. 1998, ApJL, 494, L93Google Scholar
Thomas, J. D., et al. 2013, MNRAS, 430, 1230Google Scholar
Thomas, J. D. & Witt, A. N. 2006, Proc. of the NASA LAW 2006, 264Google Scholar
Vijh, U. P., Witt, A. N., & Gordon, K. D. 2004, ApJ, 606, L65Google Scholar
Vijh, U. P., Witt, A. N., & Gordon, K. D. 2005a, ApJ, 619, 368Google Scholar
Vijh, U. P., Witt, A. N., & Gordon, K. D. 2005b, ApJ, 633, 262Google Scholar
Vijh, U. P., et al. 2006, ApJ, 653, 1336CrossRefGoogle Scholar
Wada, S., Mizutani, Y., Narisawa, T., & Tokunaga, A. T. 2009, ApJ, 690, 111Google Scholar
Watkin, S., Gledhill, T. M., & Scarrott, S. M. 1991, MNRAS, 252, 229Google Scholar
Webster, A. 1993, MNRAS, 264, L1Google Scholar
Witt, A. N., Bohlin, R. C., & Stecher, T. P. 1983, ApJ, 267, L47Google Scholar
Witt, A. N. & Boroson, T. A. 1990, ApJ, 355, 182CrossRefGoogle Scholar
Witt, A. N., Gordon, K. D., & Furton, D. G. 1998, ApJ, 501, L111Google Scholar
Witt, A. N., Gordon, K. D., Vijh, U. P., Sell, P. H., Smith, T. L., & Xie, R.-H. 2006, ApJ, 636, 303CrossRefGoogle Scholar
Witt, A. N. & Malin, D. F. 1989, ApJ, 347, L25CrossRefGoogle Scholar
Witt, A. N., Mandel, S., Sell, P. H., Dixon, T., & Vijh, U. P. 2008, ApJ, 679, 497Google Scholar
Witt, A. N. & Schild, R. E. 1988, ApJ, 325, 837Google Scholar
Witt, A. N., Schild, R. E., & Kraiman, J. B. 1984, ApJ, 281, 708Google Scholar
Witt, A. N., Vijh, U. P., Hobbs, L. M., Aufdenberg, J. P., Thorburn, J. A., & York, D. G. 2009, ApJ, 693, 1946Google Scholar
Xiang, F. Y., Li, A., & Zhong, J. X. 2011, ApJ, 733, 91Google Scholar