Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T05:56:24.886Z Has data issue: false hasContentIssue false

Black hole astrophysics with HAWC, the High Altitude Water Cherenkov γ-ray observatory

Published online by Cambridge University Press:  23 June 2017

Alberto Carramiñana
Affiliation:
Instituto Nacional de Astrofísica, Óptica y Electrónica Luis Enrique Erro 1, Tonantzintla, Puebla, México email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The HAWC gamma-ray observatory is a wide field of view and high duty cycle γ-ray detector investigating the 0.1 - 100 TeV energy range. It has detected supermassive black holes in the near Universe, and is seeking to detect black hole related objects like gamma-ray bursts, Galactic binary systems, primordial black holes and gravitational wave mergers. Daily light curves of the BL Lac objects Mrk 421 and Mrk 501 are presented here, together with a compilation of studies of black hole related objects.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

The Pierre Auger and Telescope Array Collaborations: Aab, A. et al. 2014, ApJ 794, 172.Google Scholar
LIGO Scientific Collaboration and Virgo Collaboration , Abbott, B. P., et al. 2013, ArXiV 1304.0670v3.Google Scholar
LIGO Scientific Collaboration and Virgo Collaboration , Abbot, B. P., et al. 2016, Phys. Rev. Lett 116, 061102.Google Scholar
LIGO Scientific Collaboration and Virgo Collaboration , Abbot, B. P., et al. 2016, Phys. Rev. Lett 116, 241103.Google Scholar
Abdo, A. A., et al. 2014, ApJ 782, 110.Google Scholar
Abdo, A. A., et al. 2015, Astrop. Phys. 64, 4.Google Scholar
Abeysekara, A. U., et al. 2012, Astrop. Phys. 35, 641.Google Scholar
Abeysekara, A. U., et al. 2015, ApJ 800, 78.Google Scholar
Acero, F., et al. 2015, ApJS 218, 23.Google Scholar
Ackermann, M., et al. 2014, Science 343, 42.Google Scholar
Ackerman, M., et al. 2016, ApJS 222, 5.CrossRefGoogle Scholar
Aharonian, F., et al. 2006, A&A 457, 899.Google Scholar
Aharonian, F., et al. 2013, ArXiV 1307.4690 from ICRC 2013.Google Scholar
Aharonian, F., et al. 2016, Nature 531, 476.Google Scholar
Atkins, R., et al. 2003, ApJ 595, 803.Google Scholar
Biland, A., et al. 2016, The Astronomer’s Telegram 9137.Google Scholar
Carr, B. J. 2005, Proc. of “Inflating horizon of particle astrophysics and cosmology”, astro-ph/0511743.Google Scholar
Fichtel, C. E., et al. 1994, ApJS 94, 551.CrossRefGoogle Scholar
Galbraith, W. & Jelley, J. V. 1953, Nature 171, 349.Google Scholar
Genzel, R., et al. 1996, ApJ 472, 153.Google Scholar
Hanlon, L., et al. 1994, A&A 285, 16.Google Scholar
Hartman, R. C., et al. 1999, ApJS 123, 79.Google Scholar
Hawking, S. W. 1974, Nature 248, 30.Google Scholar
Hui, M. 2016, APS April Meeting, U4.001.Google Scholar
Lennarz, D. & for the HAWC Collaboration, 2016, GCN Circular 19423.Google Scholar
Oppenheimer, J. R. & Snyder, H. 1939, Phys. Rev. 56, 455.Google Scholar
Ozernoi, L. M. & Chertoprud, V. E. 1966, Sov. Astron. 10, 15.Google Scholar
Punch, M. et al. 1992, Nature 358, 477.Google Scholar
Quinn, J. et al. 1996, ApJL, 456, 83 Google Scholar
Salpeter, E. 1964, ApJ 140, 796.Google Scholar
Sandoval, A., Lauer, R., Wood, J., & for the HAWC Collaboration, 2016, The Astronomer’s Telegram 8922.Google Scholar
Schönfelder, V., et al. 2000, A&AGoogle Scholar
Schwarzschild, K. 1916, Sitzungberichte der K. Preussischen Akademie der Wissenschaften zu Berlin 1, 189.Google Scholar
Wakely, S. P. & Horan, D. 2008, ICRC 3, 1341.Google Scholar
Webster, B. L. & Murdin, P. 1972, Nature 235, 37.Google Scholar
Wenger, M., et al. 2000, A& AS 143, 9.Google Scholar
Wilson, J. G., et al. 1963, ICRC 4, 27.Google Scholar
Wood, J. 2016, GCN Circular 19156.Google Scholar