Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T11:20:37.788Z Has data issue: false hasContentIssue false

The birth environment of the solar system constrained by the relative abundances of the solar radionuclides

Published online by Cambridge University Press:  13 January 2020

Edward D. Young*
Affiliation:
Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The relative abundances of the radionuclides in the solar system at the time of its birth are crucial arbiters for competing hypotheses regarding the birth environment of the Sun. The presence of short-lived radionuclides, as evidenced by their decay products in meteorites, has been used to suggest that particular, sometimes exotic, stellar sources were proximal to the Sun’s birth environment. The recent confirmation of neutron star - neutron star (NS-NS) mergers and associated kilonovae as potentially dominant sources of r-process nuclides can be tested in the case of the solar birth environment using the relative abundances of the longer-lived nuclides. Critical analysis of the 15 radionuclides and their stable partners for which abundances and production ratios are well known suggests that the Sun formed in a typical massive star-forming region (SFR). The apparent overabundances of short-lived radionuclides (e.g. 26Al, 41Ca, 36Cl) in the early solar system appears to be an artifact of a heretofore under-appreciation for the important influences of enrichment by Wolf-Rayet winds in SFRs. The long-lived nuclides (e.g. 238U, 244Pu, 247Cr, 129I) are consistent with an average time interval between production events of 108 years, seemingly too short to be the products of NS-NS mergers alone. The relative abundances of all of these nuclides can be explained by their mean decay lifetimes and an average residence time in the ISM of ∼200 Myr. This residence time evidenced by the radionuclides is consistent with the average lifetime of dust in the ISM and the timescale for converting molecular cloud mass to stars.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020 

References

Adams, F. C. 2010, Annu. Rev. Astron. Astrophys., 48, 47 CrossRefGoogle Scholar
Adams, F. C., Fatuzzo, M., & Holden, L. 2014, ApJ, 789, 18pp Google Scholar
Brennecka, G. A. & Kleine, T. 2017, ApJL, 837, 6pp CrossRefGoogle Scholar
Cote, B., Belczynski, K., Fryer, C. L., Ritter, C., Paul, A., Wehmeyer, B., & O’Shea, B. W. 2017, ApJ, 836, 20ppCrossRefGoogle Scholar
Cote, B., Eichler, M., Arcones, A., Hansen, C. J., Simonetti, P., Frebel, A., Fryer, C. L., Pignatari, M., Reichert, M., Belczynski, K., & Matteucci, F. 2018, arXiv:1809.03525v2Google Scholar
Diehl, R., Halloin, H., Kretschmer, K., Lichti, G., Schonfelder, V., Strong, A., von Kienlin, A., Wang, W., Jean, P., Knodlseder, J., Roques, J., Weidenspointner, G., Schanne, S., Hartmann, D., Winkler, C., & Wunderer, C. 2006, Nature, 439, 45 CrossRefGoogle Scholar
Draine, B. T. 2011, Physics of the Interstellar and Intergalactic Medium (Princeton, N.J.: Princeton University Press)CrossRefGoogle Scholar
Dwarkadas, V. V., Dauphas, N., Meyer, B., Boyajian, P., & Bojazi, M. 2017, ApJ, 851, 14ppCrossRefGoogle Scholar
Fryer, C. L. 1999, ApJ, 522, 413 10.1086/307647CrossRefGoogle Scholar
Fujimoto, Y., Krumholz, M. R., & Tachibana, S. 2018, MNRAS, 480, 4025 CrossRefGoogle Scholar
Goriely, S. & Arnould, M. 2001, A&A, 379, 1113 Google Scholar
Gounelle, M. & Meynet, G. 2012, A&A, 545, A4 Google Scholar
Harper, Charles L., J. 1996, AJ, 466, 1026 10.1086/177573CrossRefGoogle Scholar
Huss, G., Meyer, B. S., Srinivasan, G., Goswami, J. N., & Sahijpal, S. 2009, Geochemica et Cosmochimica Acta, 73, 4922 CrossRefGoogle Scholar
Iizuka, T., Lai, Y.-J., Akram, W., Amelin, Y., & Schonbachler, M. 2016, Earth and Planetary Science Letters, 439, 172 CrossRefGoogle Scholar
Jacobsen, S. 2005, in Chondrites and the Protoplanetary Disk, ed. Krot, A., Scott, E., & Reipurth, B., Vol. 341 ASP, 548–557Google Scholar
Jura, M., Xu, S., & Young, E. D. 2013, ApJ, 775, L41 CrossRefGoogle Scholar
Kasen, D., Metzger, B., Barnes, J., Quataert, E., & Ramirez-Ruiz, E. 2017, Nature, 551, 80 10.1038/nature24453CrossRefGoogle Scholar
Lugaro, M., Heger, A., Osrin, D., Goriely, S., Zuber, K., Karakas, A., Gibson, B. K., Dopherty, C. L., Lattanzio, J. C., & Ott, U. 2014, Science, 345, 650 CrossRefGoogle Scholar
Martin, P., Knodlseder, J., Diehl, R., & Meynet, G. 2009, A&A, 506, 703 Google Scholar
Meyer, B. S. & Clayton, D. D. 2000, Sp.Sci.Rev., 92, 133 CrossRefGoogle Scholar
Rauscher, T., Heger, A., Hoffman, R., & Woosley, S. 2002, ApJ, 576, 323 CrossRefGoogle Scholar
Schonbachler, M., Rehkamper, M., Halliday, A. N., Lee, D.-C., Bourot-Denise, M., Zanda, B., Hattendorf, B., & Gunther, D. 2002, Science, 295, 1705 CrossRefGoogle Scholar
Smartt, S. J. 2009, Annu. Rev. Astron. Astrophys., 47, 63 CrossRefGoogle Scholar
Smartt, S. J., Chen, T.-W., Jerkstrand, A., et al. 2017, Nature, 551, 75 CrossRefGoogle Scholar
Sukhbold, T., Woosley, S. E., & Heger, A. 2018, ApJ, 869, 22ppGoogle Scholar
Thielemann, F.-K., Eichler, M., Panov, I. V., & Wehmeyer, B. 2017, Ann. Rev.Nuc.& Part.Sci., 67, 253 10.1146/annurev-nucl-101916-123246CrossRefGoogle Scholar
Tielens, A. 2005, in The Physics and Chemistry of the Interstellar Medium, 461475 CrossRefGoogle Scholar
Tissot, F. L. H., Dauphas, N., & Grossman, L. 2016, Science Advances, 2, 7 pp CrossRefGoogle Scholar
Tsujimoto, T. & Shigeyama, T. 2014, A&A, 565, 4ppGoogle Scholar
Wasserburg, G. J., Busso, M., & Gallino, R. 1996, ApJ, 466, L109 CrossRefGoogle Scholar
Wasserburg, G. J., Busso, M., Gallino, R., & Nollett, K. M. 2006, Nuclear Physics A, 777, 5 10.1016/j.nuclphysa.2005.07.015CrossRefGoogle Scholar
Woosley, S. & Heger, A. 2007, Phys.Rep., 442, 269 10.1016/j.physrep.2007.02.009CrossRefGoogle Scholar
Young, E. D. 2014, Earth and Planetary Science Letters, 392, 16027 10.1016/j.epsl.2014.02.014CrossRefGoogle Scholar
Young, E. D. 2016, ApJ, 826, 6ppCrossRefGoogle Scholar