Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T05:28:02.581Z Has data issue: false hasContentIssue false

Bio-signatures of Planet Earth from Spectropolarimetry

Published online by Cambridge University Press:  24 July 2015

M. F. Sterzik
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Str 2, D-85748 Garching, Germany email: [email protected]
S. Bagnulo
Affiliation:
Armagh Observatory, College Hill, Armagh BT61 9DG, Northern Ireland, UK
C. Emde
Affiliation:
Meteorological Institute, Ludwig-Maximilians-University, Theresienstr. 37, D-80333 Munich, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Polarimetry is routinely used to characterise the surfaces of bodies in our solar system. In the near future, polarisation measurements of the starlight reflected by exoplanets will become a common and powerful tool to constrain the atmospheres and the surface properties of other worlds.

If extra-terrestial life has similar signatures as the life we know, then astronomical observations of planet Earth represent a benchmark to eventually probe bio-signatures also on other planets. In fact, linear polarisation spectra of Earthshine (the sunlight that has been first reflected by Earth and then reflected back to Earth by the Moon), allow us to detect the presence of oxygen, ozone, and water in the atmosphere of our planet. Surface properties such as fractional contributions of clouds and ocean, as well as vegetation can be inferred. Ultimately, Earthshine observations provide strong observational constraints on model predictions for Earth-like exoplanets.

In this contribution, we review the most recent observations of Earthshine by polarimetry. We highlight some advances in the interpretation and modelling of whole Earth polarisation, which will be of paramount importance to interpret possible bio-signatures of Earth-like planets in the habitable zone of nearby stars in the future.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Aben, I., Helderman, F., Stam, D. M., & Stammes, P. 1999, Geophys. Res. Let. 26, 591 Google Scholar
Arnold, L., Gillet, S., Lardiere, O., Riaud, P., & Schneider, J. 2002, A&A 392, 231 Google Scholar
Bailey, J. 2007, Astrobiology 7, 320 Google Scholar
Bazzon, A., Schmid, H. M., & Gisler, D. 2013, A&A 556, A117 Google Scholar
Berdyugina, S. V., Berdyugin, A. V., Fluri, D. M., & Piirola, V. 2011, Ap. Lett. 728, L6 Google Scholar
Boesche, E., Stammes, P., Preusker, R., Bennartz, R., Knap, W., & Fischer, J. 2008, App. Optics 47, 3467 Google Scholar
Buenzli, E. & Schmidt, H. M. 2009, A&A 504, 259 Google Scholar
Coffeen, D. L. 1979, J.Opt.Soc.Am. 69, 1051 Google Scholar
Deming, D. & Seager, S. 2009, Nature 462, 301 Google Scholar
Dollfus, A. 1957, Suppl. aux Annales d' Astrophysique 4, 58 Google Scholar
Emde, C., Buras, R., Mayer, B., & Blumthaler, M. 2010, Atmos. Chem. Phys. 10, 383 Google Scholar
Emde, C., Buras, R., & Mayer, B. 2011, J. Quant. Spectrosc. Radiat. Transfer 112, 1551 Google Scholar
Feister, U. & Grewe, R. 1995, Photochem. Photobiol. 62, 736 Google Scholar
Fox, G. K., et al. 1998 MNRAS 298, 303 Google Scholar
Gasteiger, J., Emde, C., Mayer, B., Buras, R., Buehler, S. A., Lemke, O. 2014, J. Quant. Spectrosc. Radiat. Transfer, 148, 99 Google Scholar
Goloub, P., Herman, M., Chepfer, H., Riedi, G., Brogniez, G., Couvert, P., & Seze, J. 2000 Journal of Geophys. Res. 105, 14747 Google Scholar
Joos, F., & Schmid, H. M. 2007 A&A 463, 1201 Google Scholar
Karalidi, T., & Stam, D. M. 2012 A&A 546, A56 Google Scholar
Karalidi, T., Stam, D. M., & Hovenier, J. W. 2011 A&A 530, A69 Google Scholar
Miles-Páez, P. A., Pallé, E. & Zapatero Osorio, M. R. 2014, Astron. Lett. 562, L5 Google Scholar
Montanes-Rodriguez, P., Palle, E., Goode, P. R., & Martin-Torres, F. J. 2006, ApJ 651, 544 Google Scholar
Pallé, E., Zapaerto Osorio, M. R., Barrena, R., Montanes-Rodriguez, P., & Martin, E. L. 2009, Nature 459, 814 Google Scholar
Petigura, E. A., Howard, A. W., & Marcy, G. W. 2013, PNAS 110, 19273 Google Scholar
Sagan, C., Thompson, W. R., Carlson, R., Gurnett, D., & Hord, C. 1993, Nature 365, 715 Google Scholar
Seager, S., Turner, E. L., Schafer, J., & Ford, E. B. 2005, Astrobiology 5, 372 CrossRefGoogle Scholar
Stam, D. 2008, A&A 482, 989 Google Scholar
Sterzik, M. F., Bagnulo, S., & Pallé, E. 2012, Nature 483, 64 Google Scholar
Stevenson, K. B., Harrington, J., Nymeyer, S., Madhusudhan, N., Seager, S., Bowman, W. C., Hardy, R. A., Deming, D., Rauscher, E., & Lust, N. B. 2010, Nature 464, 1161 Google Scholar
Takahashi, J., Itoh, Y., Akitaya, H., Okazaki, A., Kawabata, K., Oasa, Y., & Isogai, M. 2013, PASJ 65, 38 CrossRefGoogle Scholar
Tinetti, G., et al. 2006, Astrobiology 6, 881 CrossRefGoogle Scholar
Williams, D. M. & Gaidos, E. 2008, Icarus 195, 927 CrossRefGoogle Scholar
Wolstencroft, R. & Breon, F.-M. 2005, in: Adamson, A., Aspin, C., Davis, C. J., & Fujiyoshi, T. (eds.), Astronomical Polarimetry: Current Status and Future Directions, ASP Conf. Series 343 (San Francisco: ASP), p. 211 Google Scholar
Zubko, E., Videen, G., Shkuratov, Y., Muinonen, K., & Yamamoto, T. 2011, Icarus 212, 403 Google Scholar