Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T15:06:53.316Z Has data issue: false hasContentIssue false

Binary pulsar evolution: unveiled links and new species

Published online by Cambridge University Press:  20 March 2013

Andrea Possenti*
Affiliation:
INAF-Osservatorio Astronomico di Cagliari email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the last years a series of blind and/or targeted pulsar searches led to almost triple the number of known binary pulsars in the galactic field with respect to a decade ago. The focus will be on few outliers, which are emerging from the average properties of the enlarged binary pulsar population. Some of them may represent the long sought missing links between two kinds of neutron star binaries, while others could represent the stereotype of new groups of binaries, resulting from an evolutionary path which is more exotic than those considered until recently. In particular, a new class of binaries, which can be dubbed Ultra Low Mass Binary Pulsars (ULMBPs), is emerging from recent data.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Alpar, A., et al. 1982, Nature, 300, 728Google Scholar
Archibald, A. M., et al. 2009, Science, 324, 1411Google Scholar
Archibald, A. M., et al. 2010, ApJ, 722, 88CrossRefGoogle Scholar
Bailes, M., et al. 2011, Science, 333, 1717Google Scholar
Bejger, M., et al. 2012, A&A, 536, 87Google Scholar
Benvenuto, O. G., De Vito, M. A., & Horvath, J. E. 2012, ApJ, 753, 33Google Scholar
Bhalerao, V. B. & Kulkarni, S. R. 2011, ApJ, 731, L1Google Scholar
Bisnovatyi-Kogan, G. S. & Komberg, B. V. 1974, SvA, 18, 217Google Scholar
Bogdanov, S., et al. 2011, ApJ, 742Google Scholar
Burgay, M., et al. 2012, ApJ, in pressGoogle Scholar
Bhattacharya, D. & van den Heuvel, E. P. J. 1991, Physics Report, 201, 1Google Scholar
Champion, D., et al. 2008, Nature, 320, 1309Google Scholar
Corongiu, A., et al. 2012, ApJ, in pressGoogle Scholar
Deller, A., et al. 2012, ApJ, 756, 25Google Scholar
Deloye, C. J. & Bildsten, L. 2003, ApJ, 598, 1217Google Scholar
Demorest, P., et al. 2010, Nature, 467, 1081CrossRefGoogle Scholar
Freire, P. C. C., et al. 2011, MNRAS, 412, 2763Google Scholar
Fruchter, A., Stinebring, D. R., & Taylor, J. H. 1988, Nature, 333, 237Google Scholar
Horvath, J. E. 2012, Research in A&A, 12, 813Google Scholar
Konar, S. 2010, MNRAS, 409, 259CrossRefGoogle Scholar
Khargharia, J. 2012, ApJ, 744, 183Google Scholar
Lin, J., et al. 2011, ApJ, 732, 70Google Scholar
Manchester, R. N., et al. 2005, AJ, 129, 1993Google Scholar
Patruno, A. & Watts, A. L. 2012, in Timing neutron stars:., ASSL, Springer, arXiv:1206.2727Google Scholar
Phinney, E. S. 1992, in Royal Society Philosofical Transaction Series A, 341, 39Google Scholar
Phinney, E. S. & Kulkarni, S. R. 1994, in ARA&A, 35, 591Google Scholar
Pijloo, J. Y., et al. 2012, in MNRAS, 424, 2914Google Scholar
Portegies Zwart, S., et al. 2011, in ApJ 734 35Google Scholar
Radhakrishnan, V. & Srinivasan, G. 1982, in Curr. Sci., 51, 1096Google Scholar
Ruderman, M., Shaham, J., & Tavani, M. 1989, in ApJ, 336, 507Google Scholar
Shao, Y. & Li, X-D. 2012, ApJ, 756, 85Google Scholar
Stappers, B., et al. 1996, ApJ, 465, L199Google Scholar
Tam, P. H. T., et al. 2010, ApJ, 724, 207Google Scholar
Tauris, T. M. & Savonije, G. J. 1999, in A&A 1999 350, 928Google Scholar
Tauris, T. M. 2011, in Evolution of Compact Binaries, ASP Conf. Series, 447, 285Google Scholar
Tauris, T. M. & Langer, M, Kramer, M. 2011, in MNRAS, 416, 2130Google Scholar
Tauris, T. M. & Langer, M, Kramer, M. 2012, in MNRAS, 425, 1601Google Scholar
Wang, Z., et al. 2009, ApJ, 703, 2017Google Scholar
van Haaften, L. M., et al. 2012, MNRAS, 541, 22Google Scholar
van den Heuvel, E. P. J. & de Loore, C. 1973, A&A, 25, 387Google Scholar