Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T23:32:33.514Z Has data issue: false hasContentIssue false

Beyond the standard IAU framework

Published online by Cambridge University Press:  06 January 2010

Sergei Kopeikin*
Affiliation:
Department of Physics & Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss three conceivable scenarios of extension and/or modification of the IAU relativistic resolutions on time scales and spatial coordinates beyond the Standard IAU Framework. These scenarios include: (1) the formalism of the monopole and dipole moment transformations of the metric tensor replacing the scale transformations of time and space coordinates; (2) implementing the parameterized post-Newtonian formalism with two PPN parameters – β and γ; (3) embedding the post-Newtonian barycentric reference system to the Friedman-Robertson-Walker cosmological model.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Anderson, J. D., Laing, P. A., Lau, E. L., Liu, A. S., Nieto, M. M., & Turyshev, S. G. 2002, Phys. Rev. D, 65, 082004CrossRefGoogle Scholar
Anderson, J. D. 2009, Astrometric Solar-System Anomalies, this proceedings, 189CrossRefGoogle Scholar
Blanchet, L. & Damour, T. 1989, Ann. Inst. H. Poincare, Phys. Theor., 50, 377Google Scholar
Brans, C. H. & Dicke, R. H. 1961, Phys. Rev. D, 124, 925Google Scholar
Brumberg, V. A. & Kopeikin, S. M. 1989, Nuovo Cim. B, 103, 63CrossRefGoogle Scholar
Brumberg, V. A. & Kopeikin, S. M. 1990, Cel. Mech. Dyn. Astron., 48, 23Google Scholar
Capitaine, N., Andrei, A. H., Calabretta, M., Dehant, V., Fukushima, T., Guinot, B., Hohenkerk, C., Kaplan, G., Klioner, S., Kovalevsky, J., Kumkova, I., Ma, C., McCarthy, D. D., Seidelmann, K., & Wallace, P. T. 2006, Nomenclature, Precession and New Models in Fundamental Astronomy, 26th IAU Gen. Assembbly, JD16, Prague, Czech RepublicGoogle Scholar
Ciufolini, I. & Wheeler, J. A. 1995, Gravitation and Inertia, (Princeton Univ. Press: Princeton, NJ, 1995)CrossRefGoogle Scholar
Ciufolini, I. & Pavlis, E. C. 2004, Nature, 431, 958CrossRefGoogle Scholar
Dittus, H., Lämmerzahl, C., Ni, W.-T., & Turyshev, S. (eds.) 2008, Lasers, Clocks and Drag-Free: Technologies for Future Exploration in Space and Tests of Gravity (Springer: Berlin, 2008)Google Scholar
Dolgov, A. D., Sazhin, M. V., & Zeldovich, Ya. B. 1990, Basics of Modern Cosmology (Editions Frontieres: Gif-sur-Yvette, France, 1990)Google Scholar
Fukushima, T. 1995, Astron. Astrophys., 294, 895Google Scholar
Haas, R. & Poisson, E. 2005, Class. Quant. Grav., 22, 739CrossRefGoogle Scholar
Irwin, A. W. & Fukushima, T. 1999, Astron. Astrophys., 348, 642Google Scholar
Klioner, S. A. & Soffel, M. H. 2000, Phys. Rev. D, 62, 024019CrossRefGoogle Scholar
Klioner, S., Capitaine, N., Folkner, W., Guinot, B., Huang, T. Y., Kopeikin, S., Petit, G., Pitjeva, E., Seidelmann, P. K., & Soffel, M. 2009, Units of Relativistic Time Scales and Associated Quantities, this proceedings, 79CrossRefGoogle Scholar
Kopeikin, S. M. 1988, Cel. Mech., 44, 87Google Scholar
Kopeikin, S. M. & Schäfer, G. 1999, Phys. Rev. D, 60, 124002CrossRefGoogle Scholar
Kopeikin, S. M. & Gwinn, C. R. 2000, In: Towards Models and Constants for Sub-Microarcsecond Astrometry, eds. Johnston, K.J., McCarthy, D.D., Luzum, B.J. and Kaplan, G.H. (USNO, Washington DC, 2000), pp. 303307Google Scholar
Kopeikin, S. M., Ramirez, J., Mashhoon, B., & Sazhin, M. V. 2001, Phys. Lett. A, 292, 173CrossRefGoogle Scholar
Kopeikin, S. M. & Mashhoon, B. 2002, Phys. Rev. D, 65, 064025CrossRefGoogle Scholar
Kopeikin, S. & Vlasov, I. 2004, Phys. Reports, 400, 209CrossRefGoogle Scholar
Kopeikin, S., Korobkov, P., & Polnarev, A. 2006, Class. Quant. Grav., 23, 4299CrossRefGoogle Scholar
Krasinsky, G. A. & Brumberg, V. A. 2004, Cel. Mech. Dyn. Astron., 90, 267CrossRefGoogle Scholar
Lämmerzahl, C., Everitt, C. W. F., & Hehl, F. W. (eds.) 2001, Gyros, Clocks, Interferometers: Testing Relativistic Gravity in Space, Lecture Notes in Physics, Vol. 562 (Springer: Berlin, 2001)Google Scholar
Lämmerzahl, C., Preuss, O., & Dittus, H. 2006, In: Lasers, Clocks, and Drag-Free: Technologies for Future Exploration in Space and Tests of Gravity Proc. of the 359th WE-Heraeus Seminar, eds. Dittus, H., Lämmerzahl, C., Ni, W.-T., & Turyshev, S. (Springer: Berlin, 2006)Google Scholar
Misner, C. W., Thorne, K. S., & Wheeler, J. A. 1973, Gravitation (Freeman: San Francisco, 1973)Google Scholar
Mukhanov, V. 2005, Physical Foundations of Cosmology, (Cambridge University Press: Cambridge, 2005)CrossRefGoogle Scholar
Ramirez, J. & Kopeikin, S. 2002, Phys. Lett. B, 532, 1Google Scholar
Ransom, R. R., Bartel, N., Bietenholz, M. F., Ratner, M. I., Lebach, D. I., Shapiro, I. I., & Lestrade, J.-F. 2005, In: Future Directions in High Resolution Astronomy: The 10th Anniversary of the VLBA, ASP Conf. Proc., 340. Eds. Romney, J. and Reid, M., pp. 506510Google Scholar
Seidelmann, P. K. 1992, Explanatory Supplement to the Astronomical Almanac (University Science Books: Mill Valley, California, 1992) pp. 281282Google Scholar
Soffel, M., Klioner, S. A., Petit, G., Wolf, P., Kopeikin, S. M., Bretagnon, P., Brumberg, V. A., Capitaine, N., Damour, T., Fukushima, T., Guinot, B., Huang, T.-Y., Lindegren, L., Ma, C., Nordtvedt, K., Ries, J. C., Seidelmann, P. K., Vokrouhlický, D., Will, C. M., & Xu, C. 2003, Astron. J. (USA), 126, 2687CrossRefGoogle Scholar
Soffel, M., 2009, Standard Relativistic Reference Systems and the IAU Framework, this proceedings, 1Google Scholar
Will, C. M. 1993, Theory and Experiment in Gravitational Physics, (Cambridge University Press: Cambridge, 1993)Google Scholar