Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T03:09:39.176Z Has data issue: false hasContentIssue false

Better Understanding of SN Ia from Near Infrared Observations

Published online by Cambridge University Press:  17 January 2013

Robert P. Kirshner*
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Type Ia supernovae (SN Ia) are explosions of white dwarfs whose distances can be measured to a precision of ~5% using luminosity information that is encoded in the light curve shape. This property has been very successfully exploited to measure the history of cosmic expansion and to infer the presence of dark energy. But to learn the properties of dark energy and determine whether it is different from the cosmological constant demands higher precision and better accuracy than optical light curves alone can provide. The largest systematic uncertainties come from light curve fitters, photometric calibration errors, and from poor knowledge of the scattering properties of dust along the line of sight. Efforts to use SN Ia spectra as luminosity indicators have had some success, but have not produced a big step forward. Fortunately, observations of SN Ia in the near infrared (NIR), from 1 to 2 microns, offer a very promising path to better knowledge of the Hubble constant, improved constraints on dark energy, and, possibly, a route to discriminating the progenitor paths for SN Ia explosions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Amanullah, R.et al. 2010, ApJ, 716, 712Google Scholar
Baade, W. 1938, ApJ, 88, 285Google Scholar
Baade, W. & Zwicky, F. 1934, PNAS, 20, 254Google Scholar
Bailey, S.et al. 2009, A&A, 500, L17Google Scholar
Barone-Nugent, R. L.et al. 2012, ArXiv, 1204.2308Google Scholar
Blondin, S.et al. 2011, MNRAS, 417, 1280CrossRefGoogle Scholar
Blondin, S. & Tonry, J. L. 2007, ApJ, 666, 1024Google Scholar
Blondin, S., Mandel, K., & Kirshner, R. P. 2011, A&A, 256, 81Google Scholar
Blondin, S.et al. 2012, AJ, 143, 126Google Scholar
Chotard, N.et al. 2011, A&A, 529, L4Google Scholar
Dilday, B.et al. 2012, ArXiv, 1207.1306Google Scholar
Filippenko, A. V. 1997, ARAA, 35, 309Google Scholar
Filippenko, A. V.et al. 1992, AJ, 104, 1543Google Scholar
Folatelli, G.et al. 2010, AJ, 139, 120Google Scholar
Foley, R. 2012, ArXiV, 1202.0003Google Scholar
Foley, R. & Kasen, D. 2011, ApJ, 729, 55Google Scholar
Fowler, W. & Hoyle, F. 1960, ApJ, 132, 565Google Scholar
Friedman, A. 2012, Ph.D. thesis, Harvard UniversityGoogle Scholar
Garnavich, P. G.et al. 1998, ApJ, 493, L53Google Scholar
Goobar, A. 2008, ApJ, 686, L103CrossRefGoogle Scholar
Hicken, M.et al. 2009, ApJ, 700, 331Google Scholar
Hicken, M.et al. 2012, ApJS, 200, 12Google Scholar
Hubble, E. 1925, ApJ, 62, 409CrossRefGoogle Scholar
Kasen, D. 2006, ApJ, 649, 939Google Scholar
Kasen, D., Röpke, F. K., & Woosley, S. E., 2009, Nature, 460, 869Google Scholar
Kirshner, R. P. 2009, ArXiV, 0910.0257Google Scholar
Kirshner, R. P. & Oke, J. B. 1975, ApJ, 200, 574Google Scholar
Kowal, C. T. 1968, AJ, 73, 1021Google Scholar
Krisciunas, K.et al. 2007, AJ, 133, 58Google Scholar
Kuchner, M., Kirshner, R. P., Pinto, P., & Leibundgut, B. 1994, ApJ, 426, 89Google Scholar
Leibundgut, B. 1993, AJ, 105, 301Google Scholar
Lemaître, G. 1934, PNAS, 20, 12Google Scholar
Maguire, et al. 2012, ArXiV, 1205.7040Google Scholar
Mandel, K. S.et al. 2009, ApJ, 704, 629Google Scholar
Mandel, K. S., Narayan, G. & Kirshner, R. P. 2011, ApJ, 731, 120Google Scholar
Nugent, P.et al. 2011, Nature 480, 344Google Scholar
Perlmutter, S.et al. 1995, ApJ, 440, L41Google Scholar
Perlmutter, S.et al. 1997, ApJ, 483, 656Google Scholar
Perlmutter, S.et al. 1998, Nature, 391, 51Google Scholar
Perlmutter, S.et al. 1999, ApJ, 517, 565Google Scholar
Phillips, M. M.et al. 1992, AJ, 103, 163Google Scholar
Phillips, M. M. 1993, ApJ, 413, L10Google Scholar
Phillips, M. M.et al. 1999, AJ, 118, 1766Google Scholar
Riess, A. G., Press, W. H., & Kirshner, R. P. 1996a, ApJ, 473, 88Google Scholar
Riess, A. G., Press, W. H., & Kirshner, R. P. 1996b, ApJ, 473, 588Google Scholar
Riess, A. G.et al. 1998, AJ, 116, 1009Google Scholar
Schlegel, E. M. & Kirshner, R. P. 1989, AJ, 98, 577Google Scholar
Silverman, J.et al. 2012, ArXiv, 1202.2130Google Scholar
Suyu, S. H. 2012, ArXiv, 1202.4459Google Scholar
Suzuki, N.et al. 2012, ApJ, 746, 85CrossRefGoogle Scholar
Trimble, V. 1995, PASP, 107, 1133Google Scholar
Uomoto, A. & Kirshner, R. P. 1985, A&A, 149, 7Google Scholar
Wood-Vasey, W. M.et al. 2008, ApJ, 689, 377Google Scholar