Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T16:22:18.347Z Has data issue: false hasContentIssue false

Benchmarked atomic data for astrophysics

Published online by Cambridge University Press:  12 October 2020

Giulio Del Zanna*
Affiliation:
DAMTP, CMS, University of Cambridge, Wilberforce Road, CambridgeCB3 0WA, UK, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The recent calculations of atomic data for ions of astrophysical interest are reviewed with a focus on work performed in Cambridge. The calculations have been benchmarked against high-resolution laboratory and astrophysical spectra. A framework for assessing uncertainties in atomic data has also been developed. Long-standing discrepancies in predicted spectral line intensities have been resolved, and a significant number of levels in coronal ions have finally been identified, improving the modelling of the extreme-ultraviolet and soft X-ray spectral regions. Recent improvements based on collisional-radiative modelling are presented. They are relevant for the modelling of satellite lines in the X-rays and for solving the long-standing problems in the chromosphere-corona transition in stellar atmospheres.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Badnell, N. R., Del Zanna, G., Fernández-Menchero, L., et al. 2016, J. Phys. B, 49, 094001 CrossRefGoogle Scholar
Brown, C. M., Feldman, U., Seely, J. F., Korendyke, C. M., & Hara, H. 2008, ApJSS, 176, 511 CrossRefGoogle Scholar
Del Zanna, G. 2009, A&A, 508, 501 Google Scholar
Del Zanna, G. 2012a, A&A, 546, A97 Google Scholar
Del Zanna, G. 2012b, A&A, 537, A38 Google Scholar
Del Zanna, G. 2019, A&A, 624, A36 Google Scholar
Del Zanna, G. & Andretta, V. 2015, A&A, 584, A29 Google Scholar
Del Zanna, G. & Badnell, N. R. 2014, A&A, 570, A56 Google Scholar
Del Zanna, G., Berrington, K. A., & Mason, H. E. 2004, A&A, 422, 731 Google Scholar
Del Zanna, G., Dere, K. P., Young, P. R., Landi, E., & Mason, H. E. 2015, A&A, 582, A56 Google Scholar
Del Zanna, G., Fernández-Menchero, L., & Badnell, N. R. 2019, MNRAS, 484, 4754 CrossRefGoogle Scholar
Del Zanna, G., Landini, M., & Mason, H. E. 2002, A&A, 385, 968 Google Scholar
Del Zanna, G. & Mason, H. E. 2018, Living Reviews in Solar Physics, 15CrossRefGoogle Scholar
Dere, K. P., Del Zanna, G., Young, P. R., Landi, E., & Sutherland, R. S. 2019, ApJSS, 241, 22 CrossRefGoogle Scholar
Dudk, J., Dzifáková, E., Meyer-Vernet, N., et al. 2017, Sol. Phys., 292, 8 Google Scholar
Dufresne, R. P. & Del Zanna, G. 2019, A&A, 626, A123 Google Scholar
Fawcett, B. C. 1990, RAL-90-043, Rutherford Appleton Laboratory, 1Google Scholar
Fawcett, B. C., Kononov, E. Y., Hayes, R. W., & Cowan, R. D. 1972, J. Phys. B, 5, 1255 CrossRefGoogle Scholar
Jönsson, P., Gaigalas, G., Rynkun, P., et al. 2017, Atoms, 5, 16 CrossRefGoogle Scholar
Polito, V., Del Zanna, G., Dudk, J., et al. 2016, A&A, 594, A64 Google Scholar
Träbert, E. 2005, Physica Scripta Volume T, 120, 56 Google Scholar
Träbert, E., Beiersdorfer, P., Brickhouse, N. S., & Golub, L. 2014, ApJSS, 215, 6 CrossRefGoogle Scholar
Wang, K., Song, C. X., Jönsson, P., et al. 2018, ApJSS, 239, 30 CrossRefGoogle Scholar
Young, P. R., Dere, K. P., Landi, E., Del Zanna, G., & Mason, H. E. 2016, J. Phys. B: At. Mol. Phys., 49, 074009 CrossRefGoogle Scholar
Young, P. R., Watanabe, T., Hara, H., & Mariska, J. T. 2009, A&A, 495, 587 Google Scholar
Yu, X., Del Zanna, G., Stenning, D. C., et al. 2018, ApJ, 866, 146 CrossRefGoogle Scholar