Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:03:19.809Z Has data issue: false hasContentIssue false

The beaming of subhalo accretion

Published online by Cambridge University Press:  12 October 2016

Noam I. Libeskind*
Affiliation:
Leibniz-Institute für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We examine the infall pattern of subhaloes onto hosts in the context of the large-scale structure. We find that the infall pattern is essentially driven by the shear tensor of the ambient velocity field. Dark matter subhaloes are preferentially accreted along the principal axis of the shear tensor which corresponds to the direction of weakest collapse. We examine the dependence of this preferential infall on subhalo mass, host halo mass and redshift. Although strongest for the most massive hosts and the most massive subhaloes at high redshift, the preferential infall of subhaloes is effectively universal in the sense that its always aligned with the axis of weakest collapse of the velocity shear tensor. It is the same shear tensor that dictates the structure of the cosmic web and hence the shear field emerges as the key factor that governs the local anisotropic pattern of structure formation. Since the small (sub-Mpc) scale is strongly correlated with the mid-range (∼ 10 Mpc) scale - a scale accessible by current surveys of peculiar velocities - it follows that findings presented here open a new window into the relation between the observed large scale structure unveiled by current surveys of peculiar velocities and the preferential infall direction of the Local Group. This may shed light on the unexpected alignments of dwarf galaxies seen in the Local Group.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Doroshkevich, A. G., Kotok, E. V., Poliudov, A. N., Shan-darin, S. F., Sigov, I. S., & Novikov, I. D., 1980, MNRAS 192 321 Google Scholar
Faltenbacher, A., Jing, Y. P., Li, C., Mao, S., Mo, H. J., Pasquali, A., & van den Bosch, F. C., 2008, ApJ 675 146 CrossRefGoogle Scholar
Hoffmann, K., et al. 2014, ArXiv e-printsGoogle Scholar
Rees, M. J. & Ostriker, J. P., 1977, MNRAS 179 541 CrossRefGoogle Scholar
Springel, V., Frenk, C. S., & White, S. D. M., 2006, Nature,Google Scholar
White, S. D. M. & Rees, M. J., 1978, MNRAS 183 341 Google Scholar
Zeldovich, Y. B., 1970, A&A 5 84 440, 1137 Google Scholar
Zeldovich, I. B., Einasto, J., & Shandarin, S. F., 1982, Nature, 300 407 Google Scholar
Libeskind, N. I., Hoffman, Y., Forero-Romero, J., Gottlöber, S., Knebe, A., Steinmetz, M., & Klypin, A., 2013, MNRAS, 428 2489 Google Scholar
Tempel, E., Libeskind, N. I., Hoffman, Y., Liivamägi, L. J., & Tamm, A., 2014, MNRAS 437 L11 CrossRefGoogle Scholar
Komatsu, E., Dunkley, J., Nolta, M. R., Bennett, C. L., Gold, B., Hinshaw, G., et. al. 2009, ApJS 180 330 Google Scholar
Knollmann, S. R., Power, C., & Knebe, A., 2008, MNRAS 385 545 Google Scholar
Libeskind, N. I., Hoffman, Y., Knebe, A., Steinmetz, M., Gottlöber, S., Metuki, O., & Yepes, G., 2012, MNRAS, 421, L137 Google Scholar
Libeskind, N. I., Hoffman, Y., Steinmetz, M., Gottlöber, S., Knebe, A., & Hess, S., 2013, ApJL, 766, L15 Google Scholar
Libeskind, N. I., Hoffman, Y., & Gottlöber, S., 2014,MNRAS, 441, 1974 Google Scholar
Hoffman, Y., Metuki, O., Yepes, G., Gottlöber, S., Forero-Romero, J. E., Libeskind, N. I., & Knebe, A., 2012, MNRAS, 425, 2049 CrossRefGoogle Scholar