Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T12:31:44.042Z Has data issue: false hasContentIssue false

Bayesian Cosmic Web Reconstruction: BARCODE for Clusters

Published online by Cambridge University Press:  12 October 2016

E. G. Patrick Bos
Affiliation:
Kapteyn Astron. Inst., Univ. of Groningen, Groningen, the Netherlands, email: [email protected]
Rien van de Weygaert
Affiliation:
Kapteyn Astron. Inst., Univ. of Groningen, Groningen, the Netherlands, email: [email protected]
Francisco Kitaura
Affiliation:
Leibniz-Inst.für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, DE
Marius Cautun
Affiliation:
Inst. for Computational Cosmology, Univ. of Durham, Durham DH1 3LE, United Kingdom
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We describe the Bayesian \barcode\ formalism that has been designed towards the reconstruction of the Cosmic Web in a given volume on the basis of the sampled galaxy cluster distribution. Based on the realization that the massive compact clusters are responsible for the major share of the large scale tidal force field shaping the anisotropic and in particular filamentary features in the Cosmic Web. Given the nonlinearity of the constraints imposed by the cluster configurations, we resort to a state-of-the-art constrained reconstruction technique to find a proper statistically sampled realization of the original initial density and velocity field in the same cosmic region. Ultimately, the subsequent gravitational evolution of these initial conditions towards the implied Cosmic Web configuration can be followed on the basis of a proper analytical model or an N-body computer simulation. The BARCODE formalism includes an implicit treatment for redshift space distortions. This enables a direct reconstruction on the basis of observational data, without the need for a correction of redshift space artifacts. In this contribution we provide a general overview of the the Cosmic Web connection with clusters and a description of the Bayesian BARCODE formalism. We conclude with a presentation of its successful workings with respect to test runs based on a simulated large scale matter distribution, in physical space as well as in redshift space.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Adler, R. J. 1981, The Geometry of Random Fields (Wiley)Google Scholar
Adler, R. J. & Taylor, J. E. 2007, Random Fields and Geometry (Springer)Google Scholar
Bardeen, J. M., Bond, J. R., Kaiser, N. & Szalay, A. S. (BBKS) 1986, ApJ, 304, 15 Google Scholar
Bertschinger, E. 1987, ApJL, 323, 103 Google Scholar
Bond, J. R. 1995, Phys Rev. Lett., 74, 4369 Google Scholar
Bond, J. R., Kofman, L. & Pogosyan, D. 1996, Nature, 6575, 603 Google Scholar
Bond, J.R., Kofman, L., Pogosyan, D. & Wadsley, J. 1998, in Colombi, S., Mellier, Y. eds., Wide Field Surveys in Cosmology, 14th IAP meeting) (Editions Frontieres, p. 17Google Scholar
Bos, E.G.P. 2016, PhD thesis, Univ. GroningenGoogle Scholar
Cautun, M., van de Weygaert, R., Jones, B. J. T., & Frenk, C. S. 2014, MNRAS, 441, 2923 Google Scholar
Colberg, J. M., Krughoff, K. S. & Connolly, A. J. 2005, MNRAS, 359, 272 CrossRefGoogle Scholar
Colless, M., et al. 2003, arXiv:0306581Google Scholar
Dietrich, J. P., Werner, N., Clowe, D., Finoguenov, A., Kitching, T., Miller, L. & Simionescu, A. 2012, Nature, 487, 202 CrossRefGoogle Scholar
Guzzo, L. & Teh VIPERS team 2013, The Messsenger, 151, 41 Google Scholar
Guzzo, L., et al. 2014, AA, 566, 108 Google Scholar
Hess, S., Kitaura, F.-S. & Gottlöber, S. 2013, MNRAS, 435, 2065 Google Scholar
Hoffman, Y. & Ribak, E. 1991, ApJL, 380, 5 Google Scholar
Huchra, J. P., et al. 2012, ApJS, 199, 26 Google Scholar
Jasche, J. & Kitaura, F.-S. 2010 MNRAS, 407, 29 Google Scholar
Jasche, J. & Wandelt, B.-D. 2013 MNRAS, 432, 894 Google Scholar
Jaynes, E. T. 2003, Probability Theory: The Logic of Science (Cambridge Univ. Press)Google Scholar
Kitaura, F.-S. & Ensslin, T. A. 2008, MNRAS, 389, 497 Google Scholar
Kitaura, F.-S. 2012, MNRAS, 429L, 84 Google Scholar
Leclercq, F., Jasche, J., Sutter, P. M., Hamaus, N. & Wandelt, B. 2015, JCAP, 03, 047 CrossRefGoogle Scholar
Leclercq, F. 2015, Bayesian large-scale structure inference and cosmic web analysis, PhD thesis, Univ. Pierre et Marie Curie, Institut d'Astrophysique de ParisGoogle Scholar
Ludlow, A. D. & Porciani, C. 2011, MNRAS, 413, 1961 Google Scholar
Merloni, A. et al. & the German eROSITA Consortium 2012, ArXiv e-prints, 1209.3114Google Scholar
Neal, R. M. 1993, Probabilistic Inference Using Markov Chain Monte Carlo Methods, Technical Report CRG-TR-93-1, Dept. Comp. Science, Univ. TorontoGoogle Scholar
Neal, R. M. 2011 MCMC using Hamiltonian dynamics, in Brooks, S., Gelman, A., Jones, G. & Meng, X-L Handbook of Markov Chain Monte Carlo. (Chapman & Hall/CRC Press)Google Scholar
Peebles, P.J.E. 1980, The large-scale structure of the universe (Princeton Univ. Press)Google Scholar
Pogosyan, D., Bond, J. R., Kofman, L. & Wadsley, J. 1998, in Colombi, S., Mellier, Y. eds., Wide Field Surveys in Cosmology, 14th IAP meeting) (Editions Frontieres, p. 61Google Scholar
Springel, V. et al. 2005, Nature, 435, 629 Google Scholar
Tegmark, M., SDSS collaboration 2004 Ap.J., 606, 702 Google Scholar
van de Weygaert, R. & Bertschinger, E. 1996, MNRAS, 281, 84 Google Scholar
van de Weygaert, R. & Bond, J. R. 2008, Clusters and the Theory of the Cosmic Web , in Plionis, M., López-Cruz, O. & Hughes, D. eds., A Pan-Chromatic View of Clusters of Galaxies and the Large-Scale Structure, LNP 740 (Springer), p. 335 Google Scholar
Zaroubi, S., Hoffman, Y., Fisher, K. B. & Lahav, O. 1995, ApJ, 449, 446 Google Scholar
Zeldovich, Ya. B. 1970, AA, 5, 84 Google Scholar