Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T07:22:27.216Z Has data issue: false hasContentIssue false

Attenuation of non-adiabatic oscillations in a cartesian prominence fibril

Published online by Cambridge University Press:  01 September 2007

R. Soler
Affiliation:
Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain email: [email protected]; [email protected]; [email protected]
R. Oliver
Affiliation:
Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain email: [email protected]; [email protected]; [email protected]
J. L. Ballester
Affiliation:
Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain email: [email protected]; [email protected]; [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One of the typical features shown by observations of solar prominence oscillations is that they are quickly damped in time by one or several not well-known mechanisms. In addition, recent high resolution observations have revealed that the prominence fine structures, called fibrils, can oscillate with their own periods, independently from the rest of the prominence. The main aim of the present work is to study the attenuation of oscillations supported by a single prominence fibril. We consider an equilibrium made of a prominence plasma Cartesian slab of finite width embedded in a coronal medium, and assume non-adiabatic effects (thermal conduction, radiation losses and heating) as damping mechanisms. The magnetic field is taken uniform and parallel to the slab axis. We find that the efficiency of the non-adiabatic effects as damping mechanisms is different for each magnetoacoustic mode. The obtained values of the damping time are compatible with those observed in the case of the slow modes, but the fast modes are much less attenuated.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Ballai, I. 2003, A&A, 410, L17Google Scholar
Carbonell, M., Oliver, R., & Ballester, J. L. 2004, A&A, 415, 739Google Scholar
Edwin, P.M. & Roberts, B. 1982, Solar Phys., 76, 239.CrossRefGoogle Scholar
Forteza, P., Oliver, R., Ballester, J. L., & Khodachenko, M. L. 2007, A&A, 461, 731Google Scholar
Lin, Y., Engvold, O., Rouppe van der Voort, L. H. M. et al. 2005, Solar Phys., 226, 239CrossRefGoogle Scholar
Lin, Y., Engvold, O., Rouppe van der Voort, L. H. M., & van Noort, M. 2007, Solar Phys., in press. DOI:10.1007/s11207-007-0402-8CrossRefGoogle Scholar
Molowny-Horas, R., Oliver, R., Ballester, J. L., & Baudin, F. 1997, Solar Phys., 172, 181CrossRefGoogle Scholar
Molowny-Horas, R., Wiehr, E., Balthasar, H. et al. 1999, JOSO Annual Report 1998, Astronomical Institute Tatranska Lomnica, 126Google Scholar
Oliver, R. & Ballester, J. L. 2002, Solar Phys., 206, 45CrossRefGoogle Scholar
Soler, R., Oliver, R., & Ballester, J. L. 2007a, A&A, 471, 1023Google Scholar
Soler, R., Oliver, R., & Ballester, J. L. 2007b, Solar Phys., in press. DOI:10.1007/s11207-007-9084-5CrossRefGoogle Scholar
Terradas, J., Molowny-Horas, R., Wiehr, E. et al. 2002, A&A, 393, 637Google Scholar
Terradas, J., Carbonell, M., Oliver, R., & Ballester, J. L. 2005, A&A, 434, 741Google Scholar
Yi, Z., Engvold, O., & Kiel, S. L. 1991, Solar Phys., 132, 63Google Scholar
Yi, Z. & Engvold, O. 1991, Solar Phys., 134, 275CrossRefGoogle Scholar