Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T14:04:26.793Z Has data issue: false hasContentIssue false

Atomic diffusion and element mixing in pulsating stars

Published online by Cambridge University Press:  18 February 2014

Georges Alecian*
Affiliation:
LUTH (Observatoire de Paris - CNRS), Observatoire de Meudon, F-92190 Meudon, France, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stellar plasmas are multicomponent anisotropic gases. Each component (chemical element) of these gases experiences specific forces related to its properties, which leads each element to diffuse with respect to the others. There is no reason why a stellar plasma should remain homogeneous except if mixing motions enforce homogeneity. Because atomic diffusion is a very slow process, the element separation only occurs in places where mixing motions are weak enough not to erase the effect of the ineluctable tendency of chemical elements to migrate. In this talk, I will present how atomic diffusion and mixing processes compete in stars (interiors as well as atmospheres), and I will show various cases where atomic diffusion is believed to have noticeable effects. This concerns several types of stars throughout the H-R diagram, including pulsating ones.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Adelman, S. J., Gulliver, A. F., Kochukhov, O. P., & Ryabchikova, T. A. 2002, ApJ, 575, 449CrossRefGoogle Scholar
Alecian, G. 1996, A&A, 310, 872Google Scholar
Alecian, G. & Michaud, G. 2005, A&A, 431, 1Google Scholar
Alecian, G., Gebran, M., Auvergne, M., et al. 2009, A&A, 506, 69Google Scholar
Alecian, G., LeBlanc, F., & Massacrier, G. 2013, A&A, 554, A89Google Scholar
Aller, L. H. & Chapman, S. 1960, ApJ, 132, 461Google Scholar
Bourge, P., Alecian, G., Thoul, A., Scuflaire, R., & Théado, S. 2006, CoAst, 147, 105Google Scholar
Briquet, M., Korhonen, H., González, J. F., Hubrig, S., & Hackman, T. 2010, A&A, 511, A71Google Scholar
Chapman, S. & Cowling, T. G. 1970, The Mathematical Theory of non-uniform Gases (3rd ed.; Cambridge: Cambridge University Press)Google Scholar
Charbonneau, P. & Michaud, G. 1988, ApJ, 327, 809Google Scholar
Freyhammer, L. M., Kurtz, D. W., Elkin, V. G., et al. 2009, MNRAS, 396, 325CrossRefGoogle Scholar
Landstreet, J. D. 2011, A&A, 528, A132Google Scholar
Leblanc, F. & Alecian, G. 2008, A&A, 477, 243Google Scholar
Michaud, G. 1970, ApJ, 160, 641Google Scholar
Michaud, G., Richer, J., & Vick, M. 2011, A&A, 534, A18Google Scholar
Miglio, A., Montalbán, J., & Dupret, M.-A. 2007, MNRAS, 375, L21Google Scholar
Mkrtichian, D. E., Hatzes, A. P., Saio, H., & Shobbrook, R. R. 2008, A&A, 490, 1109Google Scholar
Morel, T., Briquet, M., Auvergne, M., et al. 2013, A&A, in pressGoogle Scholar
Richer, J., Michaud, G., & Turcotte, S. 2000, ApJ, 529, 338Google Scholar
Ryabchikova, T. 2005, in: Alecian, G., Richard, O., & Vauclair, S. (eds.), EAS Publications Series, Vol. 17, p. 253Google Scholar
Ryabchikova, T., Piskunov, N., Kochukhov, O., et al. 2002, A&A, 384, 545Google Scholar
Schatzman, E. 1969, A&A, 3, 331Google Scholar
Scuflaire, R. 2005, Institut d'Astrophysique et de Geophysique, Université de Liège, Belgium, CLES, Tech. rep.Google Scholar
Shulyak, D., Ryabchikova, T., Mashonkina, L., & Kochukhov, O. 2009, A&A, 499, 879Google Scholar
Thiam, M., Leblanc, F., Khalack, V., & Wade, G. A. 2010, MNRAS, 405, 1384Google Scholar
Turcotte, S. & Richard, O. 2003, Ap&SS, 284, 225Google Scholar
Vick, M., Michaud, G., Richer, J., & Richard, O. 2010, A&A, 521, A62Google Scholar