Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T10:22:15.911Z Has data issue: false hasContentIssue false

Atomic data for stellar spectroscopy

Published online by Cambridge University Press:  03 March 2020

Ulrike Heiter*
Affiliation:
Observational Astrophysics, Department of Physics and Astronomy, Uppsala University, Box 516, 751 20Uppsala, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High-precision spectroscopy of large stellar samples plays a crucial role for several topical issues in astrophysics, such as studying the chemical evolution of the Milky Way Galaxy. Data are accumulating from instruments that obtain high-quality spectra of stars in the ultraviolet, optical and infrared wavelength regions on a routine basis. The interpretation of these spectra is often based on synthetic stellar spectra, either calculated on the fly or taken from a spectral library. One of the most important ingredients of these spectra is a set of high-quality transition data for numerous species, in particular neutral and singly ionized atoms. We rely heavily on the continuous activities of laboratory astrophysics groups that produce and improve the relevant experimental and theoretical atomic data. As an example, we briefly describe the efforts done in the context of the Gaia-ESO Public Spectroscopic Survey to compile and assess the best available data in a standard way, providing a list of recommended lines for analysis of optical spectra of FGK stars. The line data, together with specialised analysis methods, allow different surveys to obtain abundances with typical precisions of ∼0.1 dex on an industrial scale for ∼10 chemical elements. Several elements with urgent need for better atomic data have been identified.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

Footnotes

and the Gaia-ESO line list group (Karin Lind, Maria Bergemann, Martin Asplund, Paul S. Barklem, Šarunas Mikolaitis, Thomas Masseron, Patrick de Laverny, Laura Magrini et al.)

References

Barklem, P. S. 2016, A&ARv, 24, 9 Google Scholar
Barklem, P. S., Nahar, S., Pickering, J., Przybilla, N., & Ryabchikova, T. 2018, Transactions of the IAU, Vol. XXXA, https://www.iau.org/static/science/scientific_bodies/working_groups/275/wg-hass-triennial-report-2015-2018.pdf Google Scholar
Blanco-Cuaresma, S., Soubiran, C., Jofré, P., & Heiter, U. 2014, A&A, 566, A98 Google Scholar
Buder, S., Asplund, M., Duong, L., et al. 2018, MNRAS, 478, 4513 CrossRefGoogle Scholar
De Silva, G. M., Freeman, K. C., Bland-Hawthorn, J., et al. 2015, MNRAS, 449, 2604 CrossRefGoogle Scholar
Dubernet, M. L., Antony, B. K., Ba, Y. A., et al. 2016, Journal of Physics B Atomic Molecular Physics, 49, 074003 CrossRefGoogle Scholar
Gilmore, G., Randich, S., Asplund, M., et al. 2012, The Messenger, 147, 25 Google Scholar
Heiter, U., Jofré, P., Gustafsson, B., et al. 2015, A&A, 582, A49 Google Scholar
Holtzman, J. A., Hasselquist, S., Shetrone, M., et al. 2018, AJ, 156, 125 CrossRefGoogle Scholar
Holtzman, J. A., Shetrone, M., Johnson, J. A., et al. 2015, AJ, 150, 148 Google Scholar
Jofré, P., Heiter, U., Soubiran, C., et al. 2015, A&A, 582, A81 Google Scholar
Jönsson, H., Allende Prieto, C., Holtzman, J. A., et al. 2018, AJ, 156, 126 CrossRefGoogle Scholar
Kramida, A., Yu. Ralchenko, Reader, J., & and Team, NIST ASD. 2018, NIST Atomic Spectra Database (ver. 5.6), [Online]. Available: https://physics.nist.gov/asd [Tue Oct 09 2018]. National Institute of Standards and Technology, Gaithersburg, MD. DOI: 10.18434/T4W30FGoogle Scholar
Lanzafame, A. C., Frasca, A., Damiani, F., et al. 2015, A&A, 576, A80 Google Scholar
Majewski, S. R., Schiavon, R. P., Frinchaboy, P. M., et al. 2017, AJ, 154, 94 CrossRefGoogle Scholar
Mészáros, S., Martell, S. L., Shetrone, M., et al. 2015, AJ, 149, 153 CrossRefGoogle Scholar
Mikolaitis, Š., Hill, V., Recio-Blanco, A., et al. 2014, A&A, 572, A33 Google Scholar
Randich, S., Gilmore, G., & Gaia-ESO Consortium. 2013, The Messenger, 154, 47 Google Scholar
Ryabchikova, T., Piskunov, N., Kurucz, R. L., et al. 2015, scr, 90, 054005 CrossRefGoogle Scholar
Sahal-Bréchot, S., Dimitrijević, M. S., Moreau, N., & Nessib, N. B. 2017, in American Institute of Physics Conference Series, Vol. 1811, Atomic Processes in Plasmas (APiP 2016), 030003Google Scholar
Shetrone, M., Bizyaev, D., Lawler, J. E., et al. 2015, ApJS, 221, 24 CrossRefGoogle Scholar
Smiljanic, R., Korn, A. J., Bergemann, M., et al. 2014, A&A, 570, A122 Google Scholar