Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T23:58:56.960Z Has data issue: false hasContentIssue false

Atomic data for IR and sub-mm wavelengths

Published online by Cambridge University Press:  21 October 2010

Gillian Nave*
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Atomic spectra in the infrared and sub-mm wavelength regions can be divided into two broad categories: electric dipole-allowed transitions, and forbidden lines due to transitions within the ground term or between low-lying levels of the same parity. Both are of potential importance in the interpretation of astrophysical spectra. Allowed transitions can provide diagnostic information for stellar photospheres, particularly for elements that are not accessible in the visible region. Electric-dipole forbidden lines are important diagnostics of low-density plasmas, such as nebulae and the interstellar medium. In order to interpret astrophysical spectra, accurate atomic data are required. This paper summarizes the techniques for measuring atomic data and lists the most important compilations and databases.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Aldenius, M. & Johansson, S. 2007, A&A 467, 753.Google Scholar
Blackwell-Whitehead, R. J., Xu, J. L., Pickering, J. C., Nave, G., & Lundberg, H. 2005 MNRAS 361, 1281.CrossRefGoogle Scholar
Blackwell-Whitehead, R. J., Lundberg, H, Nave, G., Pickering, J. C., Jones, H. R. A, Lyubchik, Y., Pavlenko, Y. V., & Viti, S. 2006 MNRAS 373, 1603.CrossRefGoogle Scholar
Cooksy, A. L., Blake, G. A., & Saykally, R. J. 1986, ApJ 305, L89.CrossRefGoogle Scholar
Forsberg, P 1991, Phys. Scr 44, 446.CrossRefGoogle Scholar
Feuctgruber, H., Lutz, D., & Beintema, D. A 2001 ApJS 136, 221.Google Scholar
Geller, M., 1992 NASA ref. publ. 1224, vol III.Google Scholar
Hartman, H., Gurell, J., Lundin, P., Schef, P., Hibbert, A., Lundberg, H., Mannervik, S., Norlin, L.-O., & Royen, P. 2008, A&A 480, 571.Google Scholar
Johansson, S. & Litzén, U. 1972, Phys. Scr. 6, 139.CrossRefGoogle Scholar
Kerber, F., Nave, G., & Sansonetti, C. J. 2008 ApJS 178, 374.CrossRefGoogle Scholar
Kerber, F., Aldenius, M., Bristow, P, Nave, G., Ralchenko, Y., & Sansonetti, C. J. this volume.Google Scholar
Litzén, U., Brault, J. W., & Thorne, A. P. 1993, Phys. Scri. 47, 628CrossRefGoogle Scholar
Nave, G., Johansson, S., Learner, R. C. M., Thorne, A. P, & Brault, J. W. 1994, ApJS 94, 221CrossRefGoogle Scholar
NIST Atomic Spectra Database, Ralchenko, Yu., Kramida, A. E., Reader, J. and NIST ASD Team 2008 [Online]. http://physics.nist.gov/asd3Google Scholar
O'Brian, T. R., Wickliffe, M. E., Lawler, J. E., Whaling, W., & Brault, J. W. 1991 JOSA B 8, 1185.CrossRefGoogle Scholar
Outred, M. 1978 J. Phys. Chem. Ref. data 7, 1.CrossRefGoogle Scholar
Pickering, J. C., Thorne, A. P. T. 1996, ApJS 107, 761.CrossRefGoogle Scholar
Pickering, J. C., Raassen, A. J. J., Uyling, P. H. M., Johansson, S. 1998, ApJS 117, 261.CrossRefGoogle Scholar
Sansonetti, C. J., Blackwell, M. M., Saloman, E. B. 2004 J. Res. NIST 109, 371CrossRefGoogle Scholar
Sansonetti, C. J. & Green, M. B 2007, Phys. Scr. 75, 577.CrossRefGoogle Scholar
Whaling, W., Anderson, W. H. C., Carle, M. T., Brault, J. W., & Zarem, H. A. 1995 J. Quant. Spectrosc. Radiat. transfer 53, 1CrossRefGoogle Scholar
Whaling, W., Anderson, W. H. C., Carle, M. T., Brault, J. W., & Zarem, H. A. 2002, J. Res. NIST 107, 149.CrossRefGoogle Scholar