Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-10-28T17:18:33.400Z Has data issue: false hasContentIssue false

Atomic and Molecular Gas Outflows in FIR Bright QSOs at High-z

Published online by Cambridge University Press:  28 October 2024

Kirsty M. Butler*
Affiliation:
Institut de Radioastronomie Millimétrique (IRAM), 300 rue de la Piscine, 38400 Saint-Martin-d’Héres, France Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, the Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Feedback and outflows associated with a quasar phase are expected to be critical in quenching the most massive galaxies at high-z. Observations targeting the cool molecular and atomic phases, which dominate the mass and momentum budget of massive galaxy outflows and remove the direct fuel for star formation are, however, severely limited in high-z QSO hosts. We discuss two recent ALMA programs: one targeting molecular outflows in 3 z ∼ 6 QSO hosts using the OH 119 μm absorption line and another targeting the diffuse, predominantly atomic gas in the halos surrounding 5 QSO host between z ∼ 2 – 4 using the OH+(11 – 10) absorption line. Outflows are successfully detected in both samples and compared with outflows driven by high-z star-forming galaxies observed in the same lines. Both studies indicate that observing QSOs during the blow-out phase is crucial for studying the impact of the active nucleus on the ejection of gas from the host galaxy.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Butler, K. M., van der Werf, P. P., Rybak, M., et al. 2021, ApJ, 919, 5.CrossRefGoogle Scholar
Butler, K. M., van der Werf, P. P., Topkaras, T., 2023, ApJ, 944, 134.CrossRefGoogle Scholar
Butler, K. M., van der Werf, P. P., Topkaras, T., 2023, ApJ, 949, 122.CrossRefGoogle Scholar
Butler, K. M., van der Werf, P. P., Omont, A., et al. 2023, A&A, 674, L5.Google Scholar
Costa, T., Rosdahl, J., Sijacki, D., & Haehnelt, M. G. 2018, MNRAS, 473, 4197 CrossRefGoogle Scholar
Decarli, R., Pensabene, A., Diax-Santos, T., et al. 2022, A&A, 662, A60 Google Scholar
Spilker, J. S., Aravena, M., Phadke, K. A., et al. 2020, ApJ, 905, 86.CrossRefGoogle Scholar
Gallerani, S., Ferrara, A., Neri, R., & Maiolino, R. 2014, MNRAS, 445, 2848 CrossRefGoogle Scholar
Governato, F., Brook, C., Mayer, L., et al. 2010, Nature, 463, 203 CrossRefGoogle Scholar
Riechers, D. A., Cooray, A., Pérez-Fournon, I., & Neri, R., ApJ, 913, 141.CrossRefGoogle Scholar
Shao, Y., Wang, R., Weiss, A., et al. 2022, A&A, 668, A121 Google Scholar
Simcoe, R. A., Sargent, W. L. W., & Rauch, M. 2004, ApJ, 1060 606, 92 CrossRefGoogle Scholar
Simpson, J. M., Smail, I., Swinbank, A. M., et al. 2012, MNRAS, 426, 3201 CrossRefGoogle Scholar
Veilleux, S., Cecil, G., & Bland-Hawthorn, J. 2005, ARAA, 43, 769,CrossRefGoogle Scholar
Venemans, B. P., Decarli, R., Walter, F., et al. 2018, ApJ, 1092 866, 159 CrossRefGoogle Scholar
Venemans, B. P., Walter, F., Neeleman, M., et al. 2020, 1094 ApJ, 904, 130 CrossRefGoogle Scholar