Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T11:06:05.411Z Has data issue: false hasContentIssue false

Astrophysically motivated laboratory measurements of deuterium reacting with isotopologues of H$${ + \over 3}$$

Published online by Cambridge University Press:  12 October 2020

K. P. Bowen
Affiliation:
Columbia Astrophysics Laboratory, Columbia University, New York, NY, U.S.A.
P.-M. Hillenbrand
Affiliation:
Columbia Astrophysics Laboratory, Columbia University, New York, NY, U.S.A.
J. Liévin
Affiliation:
Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles, Brussels, Belgium
X. Urbain
Affiliation:
Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium email: [email protected]
D. W. Savin
Affiliation:
Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

H2D+ and D2H+ are important chemical tracers of prestellar cores due to their pure rotational spectra that can be excited at the ~20 K temperature of these environments. The use of these molecules as probes of prestellar cores requires understanding the chemistry that forms and destroys these molecules. Of the eight key reactions that have been identified (Albertssonet al. 2013), five are thought to be well understood. The remaining three are the isotope exchange reactions of atomic D with H $${ + \over 3}$$ , H2D+, and D2H+. Semi-classical results differ from the classical Langevin calculations by an order of magnitude (Moyano et al. 2004). To resolve this discrepancy, we have carried out laboratory measurements for these three reactions. Absolute cross sections were measured using a dual-source, merged fast-beams apparatus for relative collision energies between ~10 meV to ~10 eV (Hillenbrand et al. 2019). A semi-empirical model was developed incorporating high level quantum mechanical ab initio calculations for the zero-point-energy-corrected potential energy barrier in order to generate thermal rate coefficients for astrochemical models. Based on our studies, we find that these three reactions proceed too slowly at prestellar core temperatures to play a significant role in the deuteration of H $${ + \over 3}$$ isotopologues.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Adams, N. G. & Smith, D. 1981, ApJ, 248, 373 CrossRefGoogle Scholar
Albertsson, T., Semenov, D. A., Vasyunin, A. I., Henning, Th ., & Herbst, E. 2013, ApJS, 207, 27 CrossRefGoogle Scholar
Bowen, K. P., Hillenbrand, P.-M., Liévin, J., Urbain, X., & Savin, D. W., in prep. de Ruette, N., Miller, K. A., O’Connor, A. P., Urbain, X., Buzard, C. F., Vissapragada, S., & Savin, D. W. 2016, ApJ, 816, 31 Google Scholar
Gerlich, D., Herbst, E., & Rueff, E. 2002, P&SS, 50, 1275 Google Scholar
Gerlich, D., & Schlemmer, S. 2002, P&SS, 50, 1287 Google Scholar
Giles, K., Adams, N. G., & Smith, D. 1992, J. Phys. Chem., 96, 7645 CrossRefGoogle Scholar
Hillenbrand, P.-M., Bowen, K. P., Liévin, J., Urbain, X., & Savin, D. W. 2019, ApJ, 877, 38 CrossRefGoogle Scholar
Hugo, E., Asvany, O., & Schlemmer, S. 2009, J. Chem. Phys., 130, 164302 CrossRefGoogle Scholar
Kong, S., Caselli, P., Tan, J. C., Wakelam, V., & Sipilä, O. 2015, ApJ, 804, 98 CrossRefGoogle Scholar
Moyano, G. E., Pearson, D., & Collins, M. A. 2004, J. Chem. Phys., 121, 12396 CrossRefGoogle Scholar
O’Connor, A. P., Urbain, X., Stützel, J., Miller, K. A., de Ruette, N., Garrido, M., & Savin, D. W. 2015, ApJ, 219, 6 Google Scholar
van der Tak, F. F. S. 2006, RSPTA, 364, 3101 Google Scholar