Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T22:21:54.521Z Has data issue: false hasContentIssue false

Asteroseismology, standard candles and the Hubble Constant: what is the role of asteroseismology in the era of precision cosmology?

Published online by Cambridge University Press:  18 February 2014

Hilding R. Neilson
Affiliation:
Dept. of Physics & Astronomy, East Tennessee State University, PO Box 70300, Johnson City, TN 37614, USA email: [email protected]
Marek Biesiada
Affiliation:
Department of Astrophysics and Cosmology, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
Nancy Remage Evans
Affiliation:
Smithsonian Astrophysical Observatory, MS 4, 60 Garden St., Cambridge, MA 02138, USA
Marcella Marconi
Affiliation:
INAF-Osservatorio astronomico di Capodimonte, Via Moiariello 16, I-80131 Napoli, Italy
Chow-Choong Ngeow
Affiliation:
Graduate Institute of Astronomy, National Central University, Jhong-Li 32001, Taiwan
Daniel R. Reese
Affiliation:
Institut d'Astrophysique et Géophysique de l'Université de Liège, Allée du 6 Août 17, 4000 Liège, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Classical Cepheids form one of the foundations of modern cosmology and the extragalactic distance scale; however, cosmic microwave background observations measure cosmological parameters and indirectly the Hubble Constant, H0, to unparalleled precision. The coming decade will provide opportunities to measure H0 to 2% uncertainty thanks to the Gaia satellite, JWST, ELTs and other telescopes using Cepheids and other standard candles. In this work, we discuss the upcoming role for variable stars and asteroseismology in calibrating the distance scale and measuring H0 and what problems exist in understanding these stars that will feed back on these measurements.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Barone-Nugent, R. L., Lidman, C., Wyithe, J. S. B., et al. 2012, MNRAS, 425, 1007Google Scholar
Belkacem, K., Goupil, M. J., Dupret, M. A., Samadi, R.et al. 2011, A&A 530, A142Google Scholar
Bellazzini, M., Ferraro, F. R., & Pancino, E. 2001, ApJ, 556, 635Google Scholar
Benedict, G. F., McArthur, B. E., Feast, M. W., et al. 2011, AJ, 142, 187Google Scholar
Bird, J. C., Stanek, K. Z., & Prieto, J. L. 2009, ApJ, 695, 874Google Scholar
Bono, G., Marconi, M., & Stellingwerf, R. F. 1999, ApJS, 122, 167CrossRefGoogle Scholar
Bono, G., Caputo, F., Fiorentino, G., Marconi, M., & Musella, I. 2008, ApJ, 684, 102CrossRefGoogle Scholar
Bono, G., Caputo, F., Marconi, M., & Musella, I. 2010, ApJ, 715, 277Google Scholar
Buchler, J. R. & Kolláth, Z. 2011, ApJ, 731, 24CrossRefGoogle Scholar
Cacciari, C. 2013, in: de Grijs, R. (ed.), Advancing the Physics of Cosmic Distances, Proc. IAU Symposium No. 289 (Cambridge: Cambridge University Press), p. 101Google Scholar
Cáceres, C. & Catelan, M. 2008, ApJS, 179, 242Google Scholar
Caputo, F., Marconi, M., & Musella, I. 2000, A&A, 354, 610Google Scholar
Caputo, F. 2012, Ap&SS, 341, 77Google Scholar
Cassisi, S. & Salaris, M. 2011, ApJ, 728, L43Google Scholar
Chadid, M. & Preston, G. W. 2013, MNRAS, 434, 552Google Scholar
Contreras Ramos, R., Clementini, G., Federici, L., et al. 2013, ApJ, 765, 71Google Scholar
Dambis, A. K., Berdnikov, L. N., Kniazev, A. Y., et al. 2013, MNRAS, 435, 3206Google Scholar
Dennefeld, M. 2011, ASP-CS, 451, 317Google Scholar
Evans, N. R., Schaefer, G. H., Bond, H. E., et al. 2008, AJ, 136, 1137Google Scholar
Evans, N. R., Massa, D., & Proffitt, C. 2009, AJ, 137, 3700CrossRefGoogle Scholar
Evans, N. R., Berdnikov, L., Gorynya, N., Rastorguev, A., & Eaton, J. 2011, AJ, 142, 87Google Scholar
Fiorentino, G., Caputo, F., Marconi, M., & Musella, I. 2002, ApJ, 576, 402CrossRefGoogle Scholar
Fiorentino, G., Marconi, M., Musella, I., & Caputo, F. 2007, A&A, 476, 863Google Scholar
Fiorentino, G., Contreras Ramos, R., Clementini, G., et al. 2010, ApJ, 711, 808Google Scholar
Fiorentino, G., Clementini, G., Marconi, M., et al. 2012, Ap&SS, 341, 143Google Scholar
Fiorentino, G., Musella, I., & Marconi, M. 2013, MNRAS, 434, 2866Google Scholar
Freedman, W. L. & Madore, B. F. 2010, ARAA, 48, 673CrossRefGoogle Scholar
Freedman, W. L., Grieve, G. R., & Madore, B. F. 1985, ApJS, 59, 311Google Scholar
Freedman, W. L., Madore, B. F., Rigby, J., Persson, S. E., & Sturch, L. 2008, ApJ, 679, 71Google Scholar
Freedman, W. L., Madore, B. F., Scowcroft, V., et al. 2011, AJ, 142, 192Google Scholar
Freedman, W. L., Madore, B. F., Scowcroft, V., et al. 2012, ApJ, 758, 24Google Scholar
Gallenne, A., Monnier, J. D., Mérand, A., et al. 2013, A&A, 552, A21Google Scholar
Gerke, J. R., Kochanek, C. S., Prieto, J. L., Stanek, K. Z., & Macri, L. M. 2011, ApJ, 743, 176Google Scholar
Gieren, W., Pietrzyński, G., Walker, A., et al. 2004, AJ, 128, 1167Google Scholar
Haschke, R., Grebel, E. K., & Duffau, S. 2012, AJ, 144, 106Google Scholar
Huang, R. Q. & Weigert, A. 1983, A&A, 127, 309Google Scholar
Kallinger, T., Mosser, B., Hekker, S., et al. 2010, A&A, 522, A1Google Scholar
Kjeldsen, H. & Bedding, T. R. 1995, A&A, 293, 87Google Scholar
Kjeldsen, H., Bedding, T. R., & Christensen-Dalsgaard, J. 2008, ApJ, 683, L175Google Scholar
Keller, S. C. 2008, ApJ, 677, 483Google Scholar
Klein, C. R., Richards, J. W., Butler, N. R., & Bloom, J. S. 2011, ApJ, 738, 185Google Scholar
Lee, M. G., Freedman, W. L., & Madore, B. F. 1993, ApJ, 417, 553Google Scholar
Madore, B. F. & Freedman, W. L. 1991, PASP, 103, 933CrossRefGoogle Scholar
Madore, B. F., Hoffman, D., Freedman, W. L., et al. 2013, ApJ, 776, 135Google Scholar
Marconi, M. 2009, MemSAIt Suppl., 80, 141Google Scholar
Marconi, M. 2012, MemSAIt Suppl., 19, 138Google Scholar
Marconi, M., Musella, I., & Fiorentino, G. 2005, ApJ, 632, 590Google Scholar
Marconi, M., Musella, I., Fiorentino, G., et al. 2010, ApJ, 713, 615Google Scholar
Marconi, M., Molinaro, R., Bono, G., et al. 2013, ApJ, 768, L6Google Scholar
Marengo, M., Evans, N. R., Barmby, P., et al. 2010a, ApJ, 709, 120Google Scholar
Marengo, M., Evans, N. R., Barmby, P., et al. 2010b, ApJ, 725, 2392Google Scholar
Monson, A. J., Freedman, W. L., Madore, B. F., et al. 2012, ApJ, 759, 146Google Scholar
Mosser, B., Belkacem, K., Goupil, M., et al. 2010, A&A 517, A22Google Scholar
Neilson, H. R. & Lester, J. B. 2008, ApJ, 684, 569Google Scholar
Neilson, H. R., Ngeow, C.-C., Kanbur, S. M., & Lester, J. B. 2010, ApJ, 716, 1136Google Scholar
Neilson, H. R., Cantiello, M., & Langer, N. 2011, A&A, 529, L9Google Scholar
Neilson, H. R., Engle, S. G., Guinan, E., et al. 2012a, ApJ, 745, L32Google Scholar
Neilson, H. R., Langer, N., Engle, S. G., Guinan, E., & Izzard, R. 2012b, ApJ, 760, L18Google Scholar
Ngeow, C.-C. 2012, Journal of Tapei Astronomical Museum, 10, 1Google Scholar
Ngeow, C.-C. & Kanbur, S. M. 2008, ApJ, 679, 76Google Scholar
Ngeow, C.-C. & Kanbur, S. M. 2010, ApJ, 720, 626Google Scholar
Ngeow, C.-C., Marconi, M., Musella, I., Cignoni, M., & Kanbur, S. M. 2012, ApJ, 745, 104Google Scholar
Ngeow, C.-C., Kanbur, S. M., Neilson, H. R., Nanthakumar, A., & Buonaccorsi, J. 2009, ApJ, 693, 691Google Scholar
Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, ApJ, 517, 565Google Scholar
Phillips, M. M. 1993, ApJ, 413, L105Google Scholar
Phillips, M. M., Feldmeier, J. J., & Jacoby, G. H. 2006, Rev. Mexicana AyA, 27, 196Google Scholar
Pietrzyński, G., Gieren, W., Udalski, A., et al. 2004, AJ, 128, 2815Google Scholar
Pietrzyński, G., Gieren, W., Soszyński, I., et al. 2006, AJ, 132, 2556Google Scholar
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2013a, arXiv: 1303.5076Google Scholar
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2013b, arXiv: 1305.5080Google Scholar
Prada Moroni, P. G., Gennaro, M., Bono, G., et al. 2012, ApJ, 749, 108Google Scholar
Reese, D. R., Marques, J. P., Goupil, M. J., Thompson, M. J., & Deheuvels, S. 2012, A&A 539, A63Google Scholar
Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, AJ, 116, 1009Google Scholar
Riess, A. G., Macri, L., Casertano, S., et al. 2009, ApJ, 699, 539Google Scholar
Riess, A. G., Macri, L., Casertano, S., et al. 2011, ApJ, 730, 119Google Scholar
Riess, A. G., Fliri, J., & Valls-Gabaud, D. 2012, ApJ, 745, 156Google Scholar
Salaris, M. & Girardi, L. 2005, MNRAS, 357, 669Google Scholar
Scowcroft, V., Freedman, W. L., Madore, B. F., et al. 2011, ApJ, 743, 76Google Scholar
Sesar, B., Ivezić, Ž., Stuart, J. S., et al. 2013, AJ, 146, 21Google Scholar
Sorce, J. G., Courtois, H. M., Tully, R. B., et al. 2013, ApJ, 765, 94Google Scholar
Sullivan, M., Conley, A., Howell, D. A., et al. 2010, MNRAS, 406, 782Google Scholar
Suyu, S. H., Auger, M. W., Hilbert, S., et al. 2013, ApJ, 766, 70Google Scholar
Tully, R. B. & Courtois, H. M. 2012, ApJ, 749, 78Google Scholar
Tully, R. B. & Fisher, J. R. 1977, A&A, 54, 661Google Scholar
Valle, G., Dell'Omodarme, M., Prada Moroni, P. G., & Degl'Innocenti, S. 2013, A&A, 554, A68Google Scholar
Valls-Gabaud, D. 2013, in: de Grijs, R. (ed.), Advancing the Physics of Cosmic Distances, Proc. IAU Symposium No. 289 (Cambridge: Cambridge University Press), p. 235Google Scholar
Wagner-Kaiser, R. & Sarajedini, A. 2013, MNRAS, 431, 1565Google Scholar
Weinberg, D. H., Mortonson, M. J., Eisenstein, D. J., et al. 2012, Phys. Rep., 530, 87Google Scholar
Wood, P. R., Arnold, A., & Sebo, K. M. 1997, ApJ, 485, L25CrossRefGoogle Scholar