Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T16:20:50.776Z Has data issue: false hasContentIssue false

Asteroseismology reveals the near-core magnetic field strength in the early-B star HD 43317

Published online by Cambridge University Press:  29 August 2024

D. M. Bowman*
Affiliation:
Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
D. Lecoanet
Affiliation:
Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA CIERA, Northwestern University, Evanston, IL 60201, USA
T. Van Reeth
Affiliation:
Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Spectropolarimetic campaigns have established that large-scale magnetic fields are present at the surfaces of approximately 10% of massive dwarf stars. However, there is a dearth of magnetic field measurements for their deep interiors. Asteroseismology of gravity-mode pulsations combined with rotating magneto-hydrodynamical calculations of the early-B main-sequence star HD 43317 constrain its magnetic field strength to be approximately 5 × 105 G just outside its convective core. This proof-of-concept study for magneto-asteroseismology opens a new window into the observational characterisation of magnetic fields inside massive stars.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Aerts et al. 2003, Science, 300, 19261928 CrossRefGoogle Scholar
Aerts (2021), Rev. Mod. Phys., 93, 015001 Google Scholar
Augustson et al. 2016, ApJ, 829, 92 CrossRefGoogle Scholar
Auvergne et al. 2009, A&A, 506, 411 Google Scholar
Briquet et al. 2013, A&A, 557, L16 Google Scholar
Browning et al. 2004, ApJ, 601, 512 CrossRefGoogle Scholar
Bouabid et al. 2013, MNRAS, 429, 2500 CrossRefGoogle Scholar
Bowman et al. 2019, Nat. Ast., 3, 760765 CrossRefGoogle Scholar
Bowman et al. 2022, A&A, 658, A96 Google Scholar
Bowman 2020, Frontiers Astron. Space Sci. 7, 70 Google Scholar
Burns et al. 2020, Phys. Rev. Research, 2, 023068 CrossRefGoogle Scholar
Burssens et al. 2020, A&A, 639, A81 Google Scholar
Buysschaert et al. 2017, A&A, 605, A104 Google Scholar
Buysschaert et al. 2018, A&A, 616, A148 Google Scholar
Dziembowski & Pamyatnykh 1993, MNRAS, 262, 204212 CrossRefGoogle Scholar
Dziembowski et al. 1993, MNRAS, 265, 588 CrossRefGoogle Scholar
Featherstone et al. 2009, ApJ, 705, 1000 CrossRefGoogle Scholar
Fuller et al. 2015, Science, 350, 423426 CrossRefGoogle Scholar
Grunhut et al. 2017, MNRAS, 465, 2432 CrossRefGoogle Scholar
Keszthelyi et al. 2019, MNRAS, 485, 5843 CrossRefGoogle Scholar
Lecoanet et al. 2017, MNRAS, 466, 21812193 CrossRefGoogle Scholar
Lecoanet et al. 2019, Journal of Computational Physics: X, 3, 100012 Google Scholar
Lecoanet, Bowman & Reeth, Van 2022, MNRAS, 512, L16L20 CrossRefGoogle Scholar
Maeder & Meynet 2005, A&A, 440, 1041 Google Scholar
Neiner et al. 2015, Proc. IAU Symp Vol. 305, Kluwer, Dordrecht, p. 61 CrossRefGoogle Scholar
Pápics et al. 2012, A&A, 542, A55 Google Scholar
Paxton et al. 2011, ApJS, 192, 3 CrossRefGoogle Scholar
Paxton et al. 2013, ApJS, 208, 4 CrossRefGoogle Scholar
Paxton et al. 2015, ApJS, 220, 15 CrossRefGoogle Scholar
Pedersen et al. 2021, Nature Astronomy, 5, 715722 CrossRefGoogle Scholar
Ricker et al. 2015, Journal of Astronomical Telescopes, nstruments, and Systems, 1, 014003 Google Scholar
Rogers & MacGregor 2010, MNRAS, 401, 191196 CrossRefGoogle Scholar
Saio 2005, MNRAS, 360, 10221032 CrossRefGoogle Scholar
Schneider et al. 2019, Nature, 574, 211 CrossRefGoogle Scholar
Sikora et al. 2019, MNRAS, 483, 2300 CrossRefGoogle Scholar
Shultz et al. 2019, MNRAS, 490, 274 CrossRefGoogle Scholar
Townsend & Teitler 2013, MNRAS, 435, 3406 CrossRefGoogle Scholar
Townsend et al. 2018, MNRAS, 475, 879 CrossRefGoogle Scholar
Vasil et al. 2019, Journal of Computational Physics: X, 3, 100013 Google Scholar
Wade et al. 2014, Proc. IAU Symp. Vol. 302, Cambridge University Press, Dordrecht, p. 265 Google Scholar