Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-07T04:23:09.695Z Has data issue: false hasContentIssue false

The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites

Published online by Cambridge University Press:  27 October 2016

Cécile Engrand
Affiliation:
CSNSM, CNRS/IN2P3-Univ.Paris-Sud, Université Paris-Saclay, 91405 Orsay, France email: [email protected]
Jean Duprat
Affiliation:
CSNSM, CNRS/IN2P3-Univ.Paris-Sud, Université Paris-Saclay, 91405 Orsay, France email: [email protected]
Noémie Bardin
Affiliation:
CSNSM, CNRS/IN2P3-Univ.Paris-Sud, Université Paris-Saclay, 91405 Orsay, France email: [email protected]
Emmanuel Dartois
Affiliation:
IAS, CNRS/INSU-Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
Hugues Leroux
Affiliation:
UMET, CNRS/Univ. Lille1, 59655 Villeneuve d'Ascq, France
Eric Quirico
Affiliation:
IPAG, UMR 5274 CNRS/INSU-UJF-Grenoble 1, 38041 Grenoble, France
Karim Benzerara
Affiliation:
IMPMC, MNHN, Case postale 115, 4 place Jussieu, 75252 Paris Cedex 05, France
Laurent Remusat
Affiliation:
IMPMC, MNHN, Case postale 115, 4 place Jussieu, 75252 Paris Cedex 05, France
Elena Dobrică
Affiliation:
Dpt Earth Planetary Sciences MSC03 2040, Univ. New Mexico, Albuquerque NM 87131, USA
Lucie Delauche
Affiliation:
CSNSM, CNRS/IN2P3-Univ.Paris-Sud, Université Paris-Saclay, 91405 Orsay, France email: [email protected]
John Bradley
Affiliation:
Hawai'i Inst. Geophysics & Planetology, University of Hawai'i, Honolulu, HI 96822, USA
Hope Ishii
Affiliation:
Hawai'i Inst. Geophysics & Planetology, University of Hawai'i, Honolulu, HI 96822, USA
Martin Hilchenbach
Affiliation:
Max-Planck-Institut für Sonnensystemforschung, 37077 Göttingen, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Comets are probably the best archives of the nascent solar system, 4.5 Gyr ago, and their compositions reveal crucial clues on the structure and dynamics of the early protoplanetary disk. Anhydrous minerals (olivine and pyroxene) have been identified in cometary dust for a few decades. Surprisingly, samples from comet Wild2 returned by the Stardust mission in 2006 also contain high temperature mineral assemblages like chondrules and refractory inclusions, which are typical components of primitive meteorites (carbonaceous chondrites - CCs). A few Stardust samples have also preserved some organic matter of comet Wild 2 that share some similarities with CCs. Interplanetary dust falling on Earth originate from comets and asteroids in proportions to be further constrained. These cosmic dust particles mostly show similarities with CCs, which in turn only represent a few percent of meteorites recovered on Earth. At least two (rare) families of cosmic dust particles have shown strong evidences for a cometary origin: the chondritic porous interplanetary dust particles (CP-IDPs) collected in the terrestrial stratosphere by NASA, and the ultracarbonaceous Antarctic Micrometeorites (UCAMMs) collected from polar snow and ice by French and Japanese teams. Analyses of dust particles from the Jupiter family comet 67P/Churyumov-Gerasimenko by the dust analyzers on Rosetta orbiter (COSIMA, GIADA, MIDAS) suggest a relationship to interplanetary dust/micrometeorites. A growing number of evidences highlights the existence of a continuum between asteroids and comets, already in the early history of the solar system.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Aléon, J. et al. 2009, Geochim. Cosmochim. Acta 73, 45584575 Google Scholar
Altwegg, K., et al. 2015, Science 347 Google Scholar
Anders, E. 1975, Icarus 24, 363371 Google Scholar
Bockelée-Morvan, D. et al. 2002, A&A 384, 11071118 Google Scholar
Bockelée-Morvan, D. et al. 2004, In Comets II Univ. Arizona Press, pp. 391423 Google Scholar
Bockelée-Morvan, D., et al. 2015, Space Sci. Rev., 1-37Google Scholar
Bradley, J. P. 2014, In Treatise on Geochemistry (Second Edition) Elsevier Oxford. pp. 287308 Google Scholar
Bradley, J. P. 2013, Geochim. Cosmochim. Acta 107, 336340 Google Scholar
Briani, G. et al. 2011, Meteoritics Planet. Sci. 46, 18631877 Google Scholar
Brownlee, D.E. 1985 Ann. Rev. Earth Planet. Sci. 13, 147–173 Google Scholar
Brownlee, D. E. 2014, Annual Review of Earth and Planetary Sciences 42, 179205 Google Scholar
Campins, H. & Swindle, T. D. 1998, Meteoritics Planet. Sci. 33, 12011211 Google Scholar
DeMeo, F. E. & Carry, B. 2014, Nature 505, 629634 Google Scholar
Dartois, E. et al. 2013, Icarus 224, 243–252 Google Scholar
De Gregorio, B. T. et al. 2011, Meteoritics Planet. Sci. 46, 13761396 Google Scholar
Dobrică, E. et al. 2009, Meteoritics Planet. Sci. 44, 16431661 Google Scholar
Duprat, J. et al. 2007, Adv. Space Res. 39, 605611 Google Scholar
Duprat, J. et al., 2010 Science 328, 742–745 Google Scholar
Engrand, C. & Maurette, M. 1998, Meteoritics Planet. Sci. 33, 565580 Google Scholar
Engrand, C., McKeegan, K. D., & Leshin, L. A. 1999, Geochim. Cosmochim. Acta 63, 26232636 Google Scholar
Flynn, G. J., et al. 2006, Science 314, 17311735 CrossRefGoogle Scholar
Gounelle, M., Spurny, P., & Bland, P. A. 2004, Meteoritics Planet. Sci. 39, #5174 Google Scholar
Gounelle, M. et al. 2008, In The Solar System Beyond Neptune, Arizona Univ. Press. 525541 Google Scholar
Hanner, M. S. & Zolensky, M. E. 2010, In Astromineralogy, Springer-Verlag. 203226.Google Scholar
Ishii, H.A. et al., 2008 Science 319, 447450.CrossRefGoogle Scholar
Keller, L. P., Thomas, K. L., & McKay, D. S. 1992, Geochim. Cosmochim. Acta 56, 14091412 CrossRefGoogle Scholar
Keller, L. P. & Messenger, S. 2013, Geochim. Cosmochim. Acta 107, 341344 Google Scholar
Lodders, K. 2010, In Principles and Perspectives in Cosmochemistry (eds. Goswami, A. and Reddy, B. E.), Springer Berlin Heidelberg. pp. 379417 CrossRefGoogle Scholar
Maurette, M. et al. 1991, Nature 351, 4447 Google Scholar
McKeegan, K. D. 1987, Science 237, 14681471 Google Scholar
McSween, H. Y. Jr. & Weissman, P. R. 1989, Geochim. Cosmochim. Acta 53, 32633271 Google Scholar
Nakamura, T. et al. 2011, Science, 333, 113 Google Scholar
Nakamura, T. et al. 2008, Science 321, 16641667 Google Scholar
Nakamura, T. et al. 2005, Meteoritics Planet. Sci. 40 Suppl., #5046 Google Scholar
Nakashima, D. et al. 2012, Earth Planet. Sci. Lett. 357–358, 355365 Google Scholar
Nakashima, D. et al. 2015, Earth Planet. Sci. Lett. 410, 5461 Google Scholar
Nesvorný, D. et al. 2010, Astrophys. J. 713, 816836 Google Scholar
Noguchi, T. et al. 2015, Earth Planet. Sci. Lett. 410, 111 Google Scholar
Ogliore, R. C. et al. 2015, Geochim. Cosmochim. Acta 166, 7491 Google Scholar
Schulz, R. et al. 2015, Nature 518, 216218 Google Scholar
Taylor, S., Lever, J. H., & Harvey, R. P. 2000, Meteoritics Planet. Sci. 35, 651666 Google Scholar
Yada, T. & Kojima, H. 2000, Antarctic Met. Res. 13, 918 Google Scholar
Wooden, D. H., Butner, H. M., Harker, D. E., & Woodward, C. E. 2000, Icarus 143, 126137 Google Scholar
Zolensky, M. E. et al. 2006, Science 314, 17351739 Google Scholar