Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T11:23:05.187Z Has data issue: false hasContentIssue false

Aspherical Supernovae and Oblique Shock Breakout

Published online by Cambridge University Press:  17 October 2017

Niloufar Afsariardchi
Affiliation:
Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St, M5S 3H4, Toronto, Canada email: [email protected] email: [email protected]
Christopher D. Matzner
Affiliation:
Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St, M5S 3H4, Toronto, Canada email: [email protected] email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In an aspherical supernova explosion, shock emergence is not simultaneous and non-radial flows develop near the stellar surface. Oblique shock breakouts tend to be easily developed in compact progenitors like stripped-envelop core collapse supernovae. According to Matzner et al. (2013), non-spherical explosions develop non-radial flows that alters the observable emission and radiation of a supernova explosion. These flows can limit ejecta speed, change the distribution of matter and heat of the ejecta, suppress the breakout flash, and most importantly engender collisions outside the star. We construct a global numerical FLASH hydrodynamic simulation in a two dimensional spherical coordinate, focusing on the non-relativistic, adiabatic limit in a polytropic envelope to see how these fundamental differences affect the early light curve of core-collapse SNe.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Afsariardchi, N. & Matzner, D. C. 2017, in prep Google Scholar
Arcavi, I., Gal-Yam, A., Yaron, O. et al. 2011, ApJ, 742, L18 CrossRefGoogle Scholar
Chevalier, R. A. 1992, ApJ, 394, 599 CrossRefGoogle Scholar
Couch, S. M., Pooley, D., Wheeler, J. C., & Milosavljević, M. 2016, ApJ, 727, 104 CrossRefGoogle Scholar
Fryxell, B. 2000, ApJS, 131, 273 CrossRefGoogle Scholar
Kaiser, N. & Pan-STARRS Team 2002, Bull. of American Astro. Soc., 34, 1304 Google Scholar
Kim, S.-L., Lee, C.-U., Park, et al. 2016, Journal of Korean Astronomical Society, 49, 37 CrossRefGoogle Scholar
Klein, R. I. & Chevalier, R. A. 1978, ApJl, 223, L109 CrossRefGoogle Scholar
MacFadyen, A. I. & Woosley, S. E. 1999, ApJ, 524, 262 CrossRefGoogle Scholar
Matzner, C. D. & McKee, C. F. 1999, ApJ, 510, 379 CrossRefGoogle Scholar
Matzner, C. D., Levin, Y., & Ro, S. 1999, ApJl, 779, 60 CrossRefGoogle Scholar
Mauerhan, J. C., Williams, G. G., Leonard, D. C., et al. 2015, MNRAS, 453, 4467 CrossRefGoogle Scholar
Nakar, E. & Sari, R. 2010, ApJ, 725, 904 CrossRefGoogle Scholar
Piran, T., Nakar, E., Mazzali, P., & Pian, E. 2017, ArXiv e-prints Google Scholar
Rabinak, I. & Waxman, E. 2011, ApJ, 728, 63 CrossRefGoogle Scholar
Sakurai, A. 1960, Comm. Pure Appl. Math, 13, 353 CrossRefGoogle Scholar
Salbi, P., Matzner, C. D., Ro, S., & Levin, Y. 2014, ApJ, 790, 71 Google Scholar
Soderberg, A. M., Berger, E., Page, K. L., et al. 2008, Nature, 453, 469 CrossRefGoogle Scholar
Suzuki, A. & Shigeyama, T. 2010, ApJl, 717, L154 Google Scholar
Suzuki, A., Maeda, K., & Shigeyama, T. 2016, ApJ, 825, 92 CrossRefGoogle Scholar
Utrobin, V. P., Wongwathanarat, A., Janka, H.-T., & Mueller, E. 2017, ArXiv e-prints Google Scholar