Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T11:50:49.839Z Has data issue: false hasContentIssue false

Are the stars of a new class of variability detected in NGC 3766 fast rotating SPB stars?

Published online by Cambridge University Press:  23 January 2015

S. J. A. J. Salmon
Affiliation:
Département d'Astrophysique, Géophysique et Océanographie, Université de Liège, Allée du 6 Août 17, 4000 Liège, Belgium email: [email protected]
J. Montalbán
Affiliation:
Département d'Astrophysique, Géophysique et Océanographie, Université de Liège, Allée du 6 Août 17, 4000 Liège, Belgium email: [email protected]
D. R. Reese
Affiliation:
School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
M.-A. Dupret
Affiliation:
Département d'Astrophysique, Géophysique et Océanographie, Université de Liège, Allée du 6 Août 17, 4000 Liège, Belgium email: [email protected]
P. Eggenberger
Affiliation:
Observatoire de Genève, Université de Genève, Chemin des Maillettes 51, 1290 Sauverny, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A recent photometric survey in the NGC 3766 cluster led to the detection of stars presenting an unexpected variability. They lie in a region of the Hertzsprung-Russell (HR) diagram where no pulsation are theoretically expected, in between the δ Scuti and slowly pulsating B (SPB) star instability domains. Their variability periods, between ~0.1–0.7 d, are outside the expected domains of these well-known pulsators. The NCG 3766 cluster is known to host fast rotating stars. Rotation can significantly affect the pulsation properties of stars and alter their apparent luminosity through gravity darkening. Therefore we inspect if the new variable stars could correspond to fast rotating SPB stars. We carry out instability and visibility analysis of SPB pulsation modes within the frame of the traditional approximation. The effects of gravity darkening on typical SPB models are next studied. We find that at the red border of the SPB instability strip, prograde sectoral (PS) modes are preferentially excited, with periods shifted in the 0.2–0.5 d range due to the Coriolis effect. These modes are best seen when the star is seen equator-on. For such inclinations, low-mass SPB models can appear fainter due to gravity darkening and as if they were located between the δ Scuti and SPB instability strips.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Aidelman, Y., Cidale, L. S., Zorec, J., & Arias, M. L. 2012, A&A 544, A64Google Scholar
Ballot, J., Lignières, F., Prat, V., Reese, D. R., & Rieutord, M. 2012, in Shibahashi, H., Takata, M., & Lynas-Gray, A. E. (eds.), Progress in Solar/Stellar Physics with Helio- and Asteroseismology, Vol. 462 of ASP Conf. Ser., p. 389Google Scholar
Bouabid, M.-P., Dupret, M.-A., Salmon, S., et al. 2013, MNRAS 429, 2500Google Scholar
De Cat, P., Briquet, M., Aerts, C., et al. 2007, A&A 463, 243Google Scholar
Degroote, P., Aerts, C., Ollivier, M., et al. 2009, A&A 506, 471Google Scholar
Eggenberger, P., Meynet, G., Maeder, A., et al. 2008, Ap&SS 316, 43Google Scholar
Georgy, C., Granada, A., Ekström, S., et al. 2014, A&A 566, A21Google Scholar
Maeder, A. & Peytremann, E. 1972, A&A 21, 279Google Scholar
McSwain, M. V., Huang, W., Gies, D. R., Grundstrom, E. D., & Townsend, R. H. D. 2008, ApJ 672, 590Google Scholar
Mowlavi, N., Barblan, F., Saesen, S., & Eyer, L. 2013, A&A 554, A108Google Scholar
Moździerski, D., Pigulski, A., Kopacki, G., Kołaczkowski, Z., & Stȩślicki, M. 2014, AcA 64, 89Google Scholar
Pamyatnykh, A. A. 1999, AcA 49, 119Google Scholar
Saesen, S., Carrier, F., Pigulski, A., et al. 2010, A&A 515, A16Google Scholar
Salmon, S. J. A. J., Montalbn, J., Reese, D. R., Dupret, M.-A., & Eggenberger, P. 2014, A&A 569, A18Google Scholar
Savonije, G. J. 2005, A&A 443, 557Google Scholar
Savonije, G. J. 2013, A&A 559, A25Google Scholar
Scuflaire, R., Théado, S., Montalbán, J., et al. 2008, Ap&SS 316, 83Google Scholar
Townsend, R. H. D. 2003, MNRAS 343, 125Google Scholar
Townsend, R. H. D. 2005a, MNRAS 360, 465Google Scholar
Townsend, R. H. D. 2005b, MNRAS 364, 573Google Scholar
von Zeipel, H. 1924, MNRAS 84, 665Google Scholar