Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T23:32:14.187Z Has data issue: false hasContentIssue false

Are tachoclines important for solar and stellar dynamos? What can we learn from global simulations

Published online by Cambridge University Press:  12 September 2017

G. Guerrero
Affiliation:
Physics Department, Universidade Federal de Minas Gerais, Av. Presidente Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil, email: [email protected]
P. K. Smolarkiewicz
Affiliation:
European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX, UK
E. M. de Gouveia Dal Pino
Affiliation:
Astronomy Department, IAG-USP, Rua do Matão, 1226, SP, 05508-090, Brazil
A. G. Kosovichev
Affiliation:
New Jersey Institute of Technology, Newark, NJ 07103, USA
B. Zaire
Affiliation:
Physics Department, Universidade Federal de Minas Gerais, Av. Presidente Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil, email: [email protected]
N. N. Mansour
Affiliation:
NASA, Ames Research Center, Moffett Field, Mountain View, CA 94040, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The role of tachoclines, the thin shear layers that separate solid body from differential rotation in the interior of late-type stars, in stellar dynamos is still controversial. In this work we discuss their relevance in view of recent results from global dynamo simulations performed with the EULAG-MHD code. The models have solar-like stratification and different rotation rates (i.e., different Rossby number). Three arguments supporting the key role of tachoclines are presented: the solar dynamo cycle period, the origin of torsional oscillations and the scaling law of stellar magnetic fields as function of the Rossby number. This scaling shows a regime where the field strength increases with the rotation and a saturated regime for fast rotating stars. These properties are better reproduced by models that consider the convection zone and a fraction of the radiative core, naturally developing a tachocline, than by those that consider only the convection zone.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Augustson, K., Brun, A. S., Miesch, M., & Toomre, J., 2015, ApJ, 809, 149 Google Scholar
Brandenburg, A., 2005, ApJ, 625, 539 CrossRefGoogle Scholar
Brown, B. P., Browning, M. K., Brun, A. S., Miesch, M. S., & Toomre, J., 2008, ApJ, 689, 1354 Google Scholar
Browning, M. K., 2008, ApJ, 676, 1262 Google Scholar
Cally, P. S., Dikpati, M., & Gilman, P. A., 2003, ApJ, 582, 1190 Google Scholar
Cameron, R. H. & Schüssler, M., 2016, A&A, 591, A46 Google Scholar
Chatterjee, P., Nandy, D., & Choudhuri, A. R., 2004, A&A, 427, 1019 Google Scholar
Dikpati, M. & Charbonneau, P., 1999, ApJ, 518, 508 Google Scholar
Donati, J.-F. & Brown, S. F., 1997, A&A, 326, 1135 Google Scholar
Ghizaru, M., Charbonneau, P., & Smolarkiewicz, P. K., 2010, ApJL, 715, L133 Google Scholar
Guerrero, G. & de Gouveia Dal Pino, E. M., 2008, A&A, 485, 267 Google Scholar
Guerrero, G., Dikpati, M., & de Gouveia Dal Pino, E. M., 2009, ApJ, 701, 725 Google Scholar
Guerrero, G. & Käpylä, P. J., 2011, A&A, 533, A40 Google Scholar
Guerrero, G., Smolarkiewicz, P. K., de Gouveia Dal Pino, E. M., Kosovichev, A. G., & Mansour, N. N. 2016a, ApJ, 819, 104 Google Scholar
Guerrero, G., Smolarkiewicz, P. K., de Gouveia Dal Pino, E. M., Kosovichev, A. G., & Mansour, N. N. 2016b, ApJL, 828, L3 CrossRefGoogle Scholar
Guerrero, G., Zaire, B., Smolarkiewicz, P. K., et al. 2017 Google Scholar
Käpylä, P. J., Mantere, M. J., & Brandenburg, A., 2012, ApJL, 755, L22 Google Scholar
Komm, R., González Hernández, I., Howe, R., & Hill, F., 2015, Sol. Phys., 290, 3113 Google Scholar
Landin, N. R., Mendes, L. T. S., & Vaz, L. P. R., 2010, A&A, 510, A46 Google Scholar
Lawson, N., Strugarek, A., & Charbonneau, P. 2015, ArXiv e-printsGoogle Scholar
Miesch, M. S., Gilman, P. A., & Dikpati, M., 2007, ApJ, 168, 337 Google Scholar
Miesch, M. S. & Hindman, B. W., 2011, ApJ, 743, 79 Google Scholar
Muñoz-Jaramillo, A., Nandy, D., & Martens, P. C. H., 2011, ApJL, 727, L23 Google Scholar
Parker, E. N., 1955, ApJ, 122, 293 Google Scholar
Petit, P., Dintrans, B., Solanki, S. K., et al., 2008, MNRAS, 388, 80 Google Scholar
Pizzolato, N., Maggio, A., Micela, G., Sciortino, S., & Ventura, P., 2003, A&A, 397, 147 Google Scholar
Steenbeck, M., Krause, F., & Rädler, K.-H., 1966, Zeitschrift Naturforschung Teil A, 21, 369 Google Scholar
Vidotto, A. A., Gregory, S. G., Jardine, M., et al., 2014, MNRAS, 441, 2361 Google Scholar
Wright, N. J. & Drake, J. J., 2016, Nature, 535, 526 Google Scholar
Wright, N. J., Drake, J. J., Mamajek, E. E., & Henry, G. W., 2011, ApJ, 743, 48 Google Scholar