Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T10:10:00.486Z Has data issue: false hasContentIssue false

Application of the GDDSYN Method in the Era of KEPLER, CoRoT, MOST and BRITE

Published online by Cambridge University Press:  23 April 2012

Stefan W. Mochnacki*
Affiliation:
Dept. of Astronomy & Astrophysics, University of Toronto, 50 St. George St. Rm. 101, Toronto ON, CanadaM5S 3H4 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The precision of observations using observatories in space exceeds by a factor of 100 the accuracy of the light curve and line profile synthesis methods developed decades ago. Furthermore, physical effects too small to detect using ground based observations, such as aberration and Doppler beaming, become important when observing from space.

The GDDSYN method, developed by Hendry and Mochnacki, is both accurate and efficient, and is useful in the new context of space-based observations. Using a geodesic distribution of triangular surface elements varying little in size, it provides an alternative to the Wilson-Devinney code used at the heart of PHOEBE, and is adaptable to the new physical effects which are now observable. Tests and improvements are discussed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Baglin, A. et al. , 2007, AIP Conf. Proc., 895, 201CrossRefGoogle Scholar
Hendry, P. D. & Mochnacki, S. W. 1992, ApJ, 388, 603CrossRefGoogle Scholar
Hendry, P. D. & Mochnacki, S. W. 2000, ApJ, 531, 467CrossRefGoogle Scholar
Hendry, P. D., Mochnacki, S. W., & Collier, A. C. 1992, ApJ, 399, 246CrossRefGoogle Scholar
Kallrath, J. & Milone, E. F. 1998, Eclipsing Binary Stars: Modeling and Analysis (New York: Springer-Verlag)Google Scholar
Koch, D. et al. , 2010, ApJ (Letters), 713, L79CrossRefGoogle Scholar
Kopeikin, S. M. & Ozernoy, L. M. 1999, ApJ, 523, 771CrossRefGoogle Scholar
Kuhn, T. S. 1962, The Structure of Scientific Revolutions (Chicago: University of Chicago Press)Google Scholar
Limber, D. N. 1963, ApJ, 138, 1112CrossRefGoogle Scholar
Lucy, L. B. 1968, ApJ, 153, 877CrossRefGoogle Scholar
Lucy, L. B. 1973, Ap&SS, 22, 381Google Scholar
Maceroni, C., van't Veer, F., & Vilhu, O. 1991, ESO Messenger 1991, No. 66, p. 47Google Scholar
Martin, P. G. M. 1970, Ap&SS, 7, 119Google Scholar
Merrill, J. E. 1950, Tables for solution of light curves of eclipsing binaries, Contributions from the Princeton University Observatory, no. 23Google Scholar
Mochnacki, S. W. & Doughty, N. A. 1972, MNRAS, 156, 51CrossRefGoogle Scholar
Mochnacki, S. W. 1984, ApJS, 55, 551CrossRefGoogle Scholar
Moyd, K. 1971, private communicationGoogle Scholar
Penrose, R. 1959, Mathematical Proceedings of the Cambridge Philosophical Society, 55, 137CrossRefGoogle Scholar
Prsa, A. & Zwitter, T. 2005, ApJ, 628, 426CrossRefGoogle Scholar
Rahvar, S., Mehrabi, A., & Dominik, M. 2011, MNRAS, 410, 912CrossRefGoogle Scholar
Russell, H. N. 1948, The Royal Road to Eclipses, in Centennial Papers, Vol. 7 of Harvard College Observatory Monographs, pp. 181-209Google Scholar
Russell, H. N. & Merrill, J. E. 1952, The Determination of the Elements of Eclipsing Binary Stars, Contributions from the Princeton University Observatory, no. 26, pp. 1-96Google Scholar
van Kerkwijk, M. H., Rappaport, S. A., Breton, R. P., Justham, S., Podsiadlowski, P., & Han, Z. 2010, ApJ, 715, 51CrossRefGoogle Scholar
Walker, G. A. H., Matthews, J., Kuschnig, R., Johnson, R., Rucinski, S. M., Pazder, J., Burley, G., Walker, A., Skaret, K., Zee, R., Grocott, S., Carroll, K., Sinclair, P., Sturgeon, H., & Harron, J. 2003, PASP, 115, 1023CrossRefGoogle Scholar
Wilson, R. E. 1979, ApJ, 234, 1054CrossRefGoogle Scholar
Wilson, R. E. & Devinney, E. J. 1971, ApJ, 166, 605CrossRefGoogle Scholar