Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T10:17:07.454Z Has data issue: false hasContentIssue false

Angular structure and gravitational imaging

Published online by Cambridge University Press:  04 March 2024

Conor M. O’Riordan*
Affiliation:
Max Planck Institut für Astrophysik, Karl-Schwarzschild-Straße 1, 85748 Garching bei München, Germany.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In gravitational imaging, the mass model for the main lensing galaxy is one of the main sources of systematic uncertainty. We use subhalo detection models with increasing levels of angular complexity in the lens mass model to analyse 100 HST mock observations. We find that perturbations of just 1% are enough to cause a 20% false positive subhalo detection rate, with order 3 multipoles having the strongest effect. The area in an observation where a substructure can be detected drops by a factor of 10 if multipoles up to 3 per cent amplitude are included in the lens model. The mass of the smallest detectable substructure however is not affected. We find a detection limit of M>108.2 M at 5σ in all models. In order for strong lensing searches for dark matter objects to remain reliable in the future, angular structure beyond the elliptical power-law must be included.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bender, R. & Moellenhoff, C. 1987, Morphological analysis of massive early-type galaxies in the Virgo Cluster. A&A, 177, 7183.Google Scholar
Bolton, A. S., Burles, S., Koopmans, L. V. E., Treu, T., & Moustakas, L. A. 2006, The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies. ApJ, 638(2), 703–724.Google Scholar
Chaware, L., Cannon, R., Kembhavi, A. K., Mahabal, A., & Pandey, S. K. 2014, Isophotal Shapes of Early-type Galaxies to Very Faint Levels. ApJ, 787(2), 102.CrossRefGoogle Scholar
Despali, G., Vegetti, S., White, S. D. M., Powell, D. M., Stacey, H. R., Fassnacht, C. D., Rizzo, F., & Enzi, W. 2022, Detecting low-mass haloes with strong gravitational lensing I: the effect of data quality and lensing configuration. MNRAS, 510(2), 24802494.CrossRefGoogle Scholar
Hao, C. N., Mao, S., Deng, Z. G., Xia, X. Y., & Wu, H. 2006, Isophotal shapes of elliptical/lenticular galaxies from the Sloan Digital Sky Survey. MNRAS, 370(3), 13391350.CrossRefGoogle Scholar
Mitsuda, K., Doi, M., Morokuma, T., Suzuki, N., Yasuda, N., Perlmutter, S., Aldering, G., & Meyers, J. 2017, Isophote Shapes of Early-type Galaxies in Massive Clusters at z ∼ 1 and 0. ApJ, 834(2), 109.CrossRefGoogle Scholar
Naab, T., Burkert, A., & Hernquist, L. 1999, On the Formation of Boxy and Disky Elliptical Galaxies. ApJ, 523(2), L133L136.CrossRefGoogle Scholar
Nightingale, J. W., He, Q., Cao, X., Amvrosiadis, A., Etherington, A., Frenk, C. S., Hayes, R. G., Robertson, A., Cole, S., Lange, S., Li, R., & Massey, R. 2022, Scanning For Dark Matter Subhalos in Hubble Space Telescope Imaging of 54 Strong Lenses. arXiv e-prints, arXiv:2209.10566.Google Scholar
O’Riordan, C. M., Despali, G., Vegetti, S., Lovell, M. R., & Moliné, Á. 2023, Sensitivity of strong lensing observations to dark matter substructure: a case study with Euclid. MNRAS, 521(2), 23422356.CrossRefGoogle Scholar
Powell, D. M., Vegetti, S., McKean, J. P., Spingola, C., Stacey, H. R., & Fassnacht, C. D. 2022, A lensed radio jet at milliarcsecond resolution I: Bayesian comparison of parametric lens models. MNRAS, 516(2), 18081828.CrossRefGoogle Scholar
Springel, V., Wang, J., Vogelsberger, M., Ludlow, A., Jenkins, A., Helmi, A., Navarro, J. F., Frenk, C. S., & White, S. D. M. 2008, The Aquarius Project: the subhaloes of galactic haloes. MNRAS, 391(4), 16851711.CrossRefGoogle Scholar
Van de Vyvere, L., Gomer, M. R., Sluse, D., Xu, D., Birrer, S., Galan, A., & Vernardos, G. 2022, TDCOSMO. VII. Boxyness/discyness in lensing galaxies: Detectability and impact on H0. A&A, 659, A127.Google Scholar
Vegetti, S., Birrer, S., Despali, G., Fassnacht, C. D., Gilman, D., Hezaveh, Y., Perreault Levasseur, L., McKean, J. P., Powell, D. M., O’Riordan, C. M., & Vernardos, G. 2023, Strong gravitational lensing as a probe of dark matter. arXiv e-prints, arXiv:2306.11781.Google Scholar
Vegetti, S. & Koopmans, L. V. E. 2009, Bayesian strong gravitational-lens modelling on adaptive grids: objective detection of mass substructure in Galaxies. MNRAS, 392(3), 945963.CrossRefGoogle Scholar
Vegetti, S., Koopmans, L. V. E., Auger, M. W., Treu, T., & Bolton, A. S. 2014, Inference of the cold dark matter substructure mass function at z = 0.2 using strong gravitational lenses. MNRAS, 442(3), 20172035.CrossRefGoogle Scholar