Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T17:03:18.116Z Has data issue: false hasContentIssue false

Angular Momentum Accretion onto Disc Galaxies

Published online by Cambridge University Press:  03 March 2020

Filippo Fraternali
Affiliation:
Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700AV Groningen, The Netherlands, email: [email protected]
Gabriele Pezzulli
Affiliation:
Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Throughout the Hubble time, gas makes its way from the intergalactic medium into galaxies fuelling their star formation and promoting their growth. One of the key properties of the accreting gas is its angular momentum, which has profound implications for the evolution of, in particular, disc galaxies. Here, we discuss how to infer the angular momentum of the accreting gas using observations of present-day galaxy discs. We first summarize evidence for ongoing inside-out growth of star forming discs. We then focus on the chemistry of the discs and show how the observed metallicity gradients can be explained if gas accretes onto a disc rotating with a velocity 20 – 30% lower than the local circular speed. We also show that these gradients are incompatible with accretion occurring at the edge of the discs and flowing radially inward. Finally, we investigate gas accretion from a hot corona with a cosmological angular momentum distribution and describe how simple models of rotating coronae guarantee the inside-out growth of disc galaxies.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Armillotta, L., Fraternali, F. & Marinacci, F. 2016, MNRAS, 462, 4157CrossRefGoogle Scholar
Bilitewski, T. & Schönrich, R. 2012, MNRAS, 426, 2266CrossRefGoogle Scholar
Birnboim, Y. & Dekel, A. 2003, MNRAS, 345, 349CrossRefGoogle Scholar
Binney, J. 2004, MNRAS, 347, 1093CrossRefGoogle Scholar
Dale, D. A. 2016, AJ, 151, 4CrossRefGoogle Scholar
Fall, S. M. & Romanowsky, A. J. 2013, ApJ, 769, 26CrossRefGoogle Scholar
Fox, A. J., Lehner, N., Lockman, F. J., et al. 2016, ApJL, 816L, 11Google Scholar
Fraternali, F. & Tomassetti, M. 2012, MNRAS, 426, 2166CrossRefGoogle Scholar
Fraternali, F., Marasco, A., Marinacci, F. & Binney, J. 2013, ApJL, 764L, 21CrossRefGoogle Scholar
Fraternali, F., Marasco, A., Armillotta, L. & Marinacci, F. 2015, MNRAS, 447, L70CrossRefGoogle Scholar
Fraternali, F. 2017, Gas Accretion onto Galaxies, ASSL, 430, 323CrossRefGoogle Scholar
Gogarten, S. M. et al. 2010, ApJ, 712, 858CrossRefGoogle Scholar
Genovali, K. et al. 2015, A&A, 580A, 17Google Scholar
Hodges-Kluck, E. J., Miller, M. J. & Bregman, J. N. 2016, ApJ, 822, 21CrossRefGoogle Scholar
Kennicutt, R. C. & Evans, N. J. 2012 ARA&A, 50, 531CrossRefGoogle Scholar
Kereš, D., Katz, N., Fardal, M., Davé, R., & Weinberg, D. H. 2009, MNRAS, 395, 160CrossRefGoogle Scholar
Larson, R. B. 1976, MNRAS, 176, 31CrossRefGoogle Scholar
Lehner, N., & Howk, J. C. 2011, Science, 334, 955CrossRefGoogle Scholar
Marasco, A., Fraternali, F., & Binney, J. J. 2012, MNRAS, 419, 1107CrossRefGoogle Scholar
Mayor, M. & Vigroux, L. 1981, A&A, 98, 1Google Scholar
Miller, M. J., & Bregman, J. N. 2015, ApJ, 800, 14CrossRefGoogle Scholar
Muñoz-Mateos, J. C. et al. 2007, ApJ, 658, 1006CrossRefGoogle Scholar
Pacifici, C., Oh, S., Oh, K., Lee, J. & Yi, S. K. 2016, ApJ, 824, 45CrossRefGoogle Scholar
Peebles, P. J. E. 1969, ApJ, 155, 393CrossRefGoogle Scholar
Pezzulli, G., Fraternali, F., Boissier, S. & Muñoz-Mateos, J. C. 2015, MNRAS, 451, 2324Google Scholar
Pezzulli, G. & Fraternali, F. 2016a MNRAS, 455, 2308CrossRefGoogle Scholar
Pezzulli, G. & Fraternali, F. 2016b AN, 337, 913Google Scholar
Pezzulli, G., Fraternali, F. & Binney, J. 2017, MNRAS, 467, 311Google Scholar
Pitts, E. & Tayler, R. J. 1989, MNRAS, 240, 373CrossRefGoogle Scholar
Putman, M. E., Peek, J. E. G., & Joung, M. R. 2012, ARA&A, 50, 491CrossRefGoogle Scholar
Rubin, K. H. R., Prochaska, J. X., Koo, D. C., & Phillips, A. C. 2012, ApJL, 747L, 26CrossRefGoogle Scholar
Saintonge, A. et al. 2011, MNRAS, 415, 61CrossRefGoogle Scholar
Sancisi, R., Fraternali, F., Oosterloo, T. & van der Hulst, T. 2008, A&ARv, 15, 189Google Scholar
Schönrich, R. & Binney, J. 2009, MNRAS, 396, 203CrossRefGoogle Scholar
Speagle, J. S. et al. 2014, ApJS, 214, 15CrossRefGoogle Scholar
Su, M. et al. 2010, ApJ, 724, 1044CrossRefGoogle Scholar
Tumlinson, J., Peeples, M. S., & Werk, J. K. 2017, ARA&A, 55, 389CrossRefGoogle Scholar
van den Bosch, F. C., Jiang, F., Hearin, A., et al. 2014, MNRAS, 445, 1713CrossRefGoogle Scholar
Wakker, B. P., & van Woerden, H. 1997, ARA&A, 35, 217CrossRefGoogle Scholar
Williams, B. F. et al. 2009, ApJ, 695, 15CrossRefGoogle Scholar