Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T23:42:18.142Z Has data issue: false hasContentIssue false

An Overview of Inside-Out Planet Formation

Published online by Cambridge University Press:  27 October 2016

Jonathan C. Tan
Affiliation:
Depts. of Astronomy & Physics, University of Florida, Gainesville, FL 32611, USA email: [email protected]
Sourav Chatterjee
Affiliation:
CIERA, Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
Xiao Hu
Affiliation:
Dept. of Astronomy, University of Florida, Gainesville, FL 32611, USA
Zhaohuan Zhu
Affiliation:
Dept. of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
Subhanjoy Mohanty
Affiliation:
Dept. of Physics, Imperial College, London, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Kepler-discovered Systems with Tightly-packed Inner Planets (STIPs), typically with several planets of Earth to super-Earth masses on well-aligned, sub-AU orbits may host the most common type of planets, including habitable planets, in the Galaxy. They pose a great challenge for planet formation theories, which fall into two broad classes: (1) formation further out followed by inward migration; (2) formation in situ, in the very inner regions of the protoplanetary disk. We review the pros and cons of these classes, before focusing on a new theory of sequential in situ formation from the inside-out via creation of successive gravitationally unstable rings fed from a continuous stream of small (~cm-m size) “pebbles,” drifting inward via gas drag. Pebbles first collect at the pressure trap associated with the transition from a magnetorotational instability (MRI)-inactive (“dead zone”) region to an inner, MRI-active zone. A pebble ring builds up that begins to dominate the local mass surface density of the disk and spawns a planet. The planet continues to grow, most likely by pebble accretion, until it becomes massive enough to isolate itself from the accretion flow via gap opening. This reduces the local gas density near the planet, leading to enhanced ionization and a retreat of the dead zone inner boundary. The process repeats with a new pebble ring gathering at the new pressure maximum associated with this boundary. We discuss the theory's predictions for planetary masses, relative mass scalings with orbital radius, and minimum orbital separations, and their comparison with observed systems. Finally, we discuss open questions, including potential causes of diversity of planetary system architectures, i.e., STIPs versus Solar System analogs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Alcalá, J. M., Natta, A., Manara, C. F. et al. 2014, A&A, 561, 2 Google Scholar
Balbus, S. A. & Hawley, J. F. 1991, ApJ, 376, 214 CrossRefGoogle Scholar
Batygin, K. & Morbidelli, A. 2013, AJ, 145, 1 CrossRefGoogle Scholar
Bitsch, B., Lambrechts, M., & Johansen, A. 2015, A&A, in press (arXiv:1507.05209)Google Scholar
Chatterjee, S. & Ford, E. B. 2015, ApJ, 803, 33 CrossRefGoogle Scholar
Chatterjee, S. & Tan, J. C. 2014, ApJ 780 53 (CT14, Paper I)Google Scholar
Chatterjee, S. & Tan, J. C. 2015, ApJ 798 L32 (CT15, Paper II)CrossRefGoogle Scholar
Chiang, E. & Laughlin, G. 2013, MNRAS, 431, 3444 CrossRefGoogle Scholar
de Gregorio-Monsalvo, I., Ménard, F., Dent, W. et al. 2013, A&A, 557, 133 Google Scholar
Dzyurkevich, N., Flock, M., Turner, N. J., Klahr, H., & Henning, T. 2010, A&A, 515, 70 Google Scholar
Fang, J. & Margot, J. L. 2012, ApJ, 761, 92 CrossRefGoogle Scholar
Goldreich, P. & Schlichting, H. E. 2014, AJ, 147, 32 CrossRefGoogle Scholar
Hansen, B. & Murray, N. 2012, ApJ, 751, 158 CrossRefGoogle Scholar
Hansen, B. & Murray, N. 2013, ApJ, 775, 53 CrossRefGoogle Scholar
Hu, X., Tan, J. C., & Chatterjee, S. 2014, IAUS 310 66 (arXiv:1410.5819)CrossRefGoogle Scholar
Hu, X., Zhu, Z., Tan, J. C., & Chatterjee, S. 2015, ApJ, submitted (arXiv:1508.02791)Google Scholar
Kley, W. & Nelson, R. P. 2012, ARA&A, 50, 211 Google Scholar
Lambrechts, M. & Johansen, A. 2014, A&A, 572, 107 Google Scholar
Levison, H. F., Kretke, K. A., & Duncan, M. J. 2015, Nature, 524, 322 CrossRefGoogle Scholar
Lin, D. N. C. & Papaloizou, J. C. B. 1993, in Protostars and Planets III, ed. Levy, E. H. & Lunine, J. I. (Tucson, AZ: Univ. Arizona Press), 749 Google Scholar
Lissauer, J. J., Ragozzine, D., Fabrycky, D. C., et al. 2011, ApJS, 197, 8 CrossRefGoogle Scholar
Lithwick, Y. & Wu, Y. 2012, ApJL, 756, L11 CrossRefGoogle Scholar
Manara, C. F., Testi, L., Natta, A. et al. 2014, A&A, 568, 18 Google Scholar
McNeil, D. S. & Nelson, R. P. 2010, MNRAS, 401, 1691 CrossRefGoogle Scholar
Mullally, F., Coughlin, J. L., Thompson, S. E. et al. 2015, ApJS, 217, 31 CrossRefGoogle Scholar
Ogihara, M., Morbidelli, A., & Guillot, T. 2015, A&A, 578, 36 Google Scholar
Pérez, L. M., Carpenter, J. M., Chandler, C. J. et al. 2012, ApJ, 760, 17 CrossRefGoogle Scholar
Rein, H. 2012, MNRAS, 427, L21 Google Scholar
Shakura, N. I. & Sunyaev, R. A. 1973, A&A, 24, 337 Google Scholar
Trotta, F., Testi, L., Natta, A., Isella, A., & Ricci, L. 2013, A&A, 558, 64 Google Scholar
Umebayashi, T. & Nakano, T. 1988, PThPS, 96, 151 Google Scholar
Weidenschilling, S. J. 1977, MNRAS, 180, 57 CrossRefGoogle Scholar
Youdin, A. N. & Goodman, J. 2005, ApJ, 629, 459 CrossRefGoogle Scholar
Zhu, Z., Hartmann, L., Gammie, C., & McKinney, J. C. 2009, ApJ, 701, 620 CrossRefGoogle Scholar