Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-16T01:11:06.188Z Has data issue: false hasContentIssue false

Ammonia in C-rich stars

Published online by Cambridge University Press:  30 December 2019

Bartosz Etmański
Affiliation:
Nicolaus Copernicus Astronomical Centre of the Polish Academy of Sciences, Departament of Astrophysics, 87-140 Toruń, Rabiańska 8, Poland
Mirosław R. Schmidt
Affiliation:
Nicolaus Copernicus Astronomical Centre of the Polish Academy of Sciences, Departament of Astrophysics, 87-140 Toruń, Rabiańska 8, Poland
Bosco H. K. Yung
Affiliation:
Nicolaus Copernicus Astronomical Centre of the Polish Academy of Sciences, Departament of Astrophysics, 87-140 Toruń, Rabiańska 8, Poland
Ryszard Szczerba
Affiliation:
Nicolaus Copernicus Astronomical Centre of the Polish Academy of Sciences, Departament of Astrophysics, 87-140 Toruń, Rabiańska 8, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

HIFI instrument onboard the Herschel satellite provided an unprecedented number of detections of rotational transitions of ammonia in circumstellar envelopes of evolved stars including massive red supergiants, Asymptotic Giant Branch (AGB), and post-AGB stars. The chemistry of ammonia formation in the circumstellar envelopes of evolved stars is poorly understood. The mechanisms proposed for its formation are processes behind the shock front, photochemistry in the inner part of the clumpy envelope, and formation on dust grains. We present results of the non-local thermodynamical equilibrium (non-LTE) radiative transfer modeling of ammonia transitions, mainly of the ground-state rotational one NH3 JK = 10 – 00 at 572.5 GHz, in selected AGB stars, aiming at the quantitative estimation of the NH3 abundance. The model of ammonia includes IR radiative pumping via v2 = 1 vibrational band at 10 μm.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Brown, A.G.A., Vallenari, A., Prusti, T., de Bruijne, J.H.J, Babusiaux, C., & Bailer-Jones, C.A.L 2018, arXiv:1804.09365Google Scholar
Decin, L., Agdez, M., Barlow, M. J., Daniel, F., Cernicharo, J., Lombaert, R., Beck, De, et al. 2010, Nature 467, 64 CrossRefGoogle Scholar
Gobrecht, D., Cherchneff, I, Sarangi, A., Plane, J.M.C., & Bromley, S.T. 2016, A&A 585, A6 Google Scholar
Gong, Y., Henkel, C., Spezzano, S., et al. 2015, A&A, 574, A56 CrossRefGoogle Scholar
Heays, A. N., Bosman, A. D., & van Dishoeck, E. F. 2017, A&A 602, A105 Google Scholar
Ivezic, Z., Nenkova, M., & Elitzur, M. 1999, http://www.pa.uky.edu/ moshe/dusty Google Scholar
Johnson, H. R. & Sauval, A. J. 1982, A&ASuppl. 49, 77 Google Scholar
Li, X., Millar, T.J., Heays, A. N., et al. 2016, A&A 588, A4 Google ScholarPubMed
Mamon, G. A., Glassgold, A. E., & Huggins, P. J. 1988, ApJ 328, 797 CrossRefGoogle Scholar
Schmidt, M. R., He, J. H., Szczerba, R., Bujarrabal, V., Alcolea, J., Cernicharo, J., et al. 2016, A&A 592, A131 Google ScholarPubMed
Szczerba, R., Omont, A., Volk, K., Cox, P., & Kwok, S. 1997, A&A 317, 859 Google Scholar
Yurchenko, S. N., Barber, R. J., Tennyson, J. 2011, New Astron. Revs 46, 513 Google Scholar
Willacy, K., & Cherchneff, I. 1998, A&A 330, 676 Google Scholar