Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T18:22:23.086Z Has data issue: false hasContentIssue false

The AMBRE Project: r-process element abundances in the Milky Way thin and thick discs

Published online by Cambridge University Press:  07 March 2018

Guillaume Guiglion
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP) An der Sternwarte 16, 14482 Potsdam email: [email protected]
Patrick de Laverny
Affiliation:
Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, France
Alejandra Recio-Blanco
Affiliation:
Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, France
C. Clare Worley
Affiliation:
Institute of Astronomy, University of Cambridge, Madingley Rise, Cambridge CB3 0HA, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Chemical evolution of r-process elements in the Milky Way disc is still a matter of debate. We took advantage of high resolution HARPS spectra from the ESO archive in order to derive precise chemical abundances of 3 r-process elements Eu, Dy & Gd for a sample of 4 355 FGK Milky Way stars. The chemical analysis has been performed thanks to the automatic optimization pipeline GAUGUIN. Based on the [α/Fe] ratio, we chemically characterized the thin and the thick discs, and present here results of these 3 r-process element abundances in both discs. We found an unexpected Gadolinium and Dysprosium enrichment in the thick disc stars compared to Europium, while these three elements track well each other in the thin disc.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Battistini, C. & Bensby, T., 2016, A&A, 586, A49 Google Scholar
Den Hartog, E. A., Lawler, J. E., Sneden, C., & Cowan, J. J., 2006, ApJS, 167, 292.Google Scholar
De Pascale, M., Worley, C. C., de Laverny, P., et al., 2014, A&A, 570, A68 Google Scholar
Freiburghaus, C., Rosswog, S., & Thielemann, F.-K., 1999, ApJ, 525, L121 Google Scholar
Guiglion, G, de Laverny, P., Recio-Blanco, A., Worley, C. C., et al. A&A, 2016, 595, A18 Google Scholar
Kupka, F., Piskunov, N., Ryabchikova, T. A., Stempels, H. C., et al. A&A, 1999, 138, 119 Google Scholar
Lawler, J. E., Wickliffe, M. E., den Hartog, E. A., & Sneden, C. 2001, ApJ, 563, 1075.CrossRefGoogle Scholar
Nishimura, S., Kotake, K., Hashimoto, M., et al. 2006, ApJ, 642, 410 CrossRefGoogle Scholar
Travaglio, C., Galli, D., Gallino, R., et al. 1999, ApJ, 521, 69 Google Scholar
Wickliffe, M. E., Lawler, J. E., & Nave, G., 2000, J. Quant. Spec. Radiat. Transf., 2000, 66, 363 CrossRefGoogle Scholar
Woosley, S. E., Wilson, J. R., Mathews, G. J., Hoffman, R. D., et al. 1994, ApJ, 433, 229 Google Scholar