Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T00:41:32.912Z Has data issue: false hasContentIssue false

Allan Sandage and the distance scale

Published online by Cambridge University Press:  26 February 2013

G. A. Tammann
Affiliation:
Department of Physics and Astronomy, University of Basel, Klingelbergstrasse 82, 4056 Basel, email: [email protected]
B. Reindl
Affiliation:
Department of Physics and Astronomy, University of Basel, Klingelbergstrasse 82, 4056 Basel, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Allan Sandage returned to the distance scale and the calibration of the Hubble constant again and again during his active life, experimenting with different distance indicators. In 1952 his proof of the high luminosity of Cepheids confirmed Baade's revision of the distance scale (H0 ~ 250 km s−1 Mpc−1). During the next 25 years, he lowered the value to 75 and 55. Upon the arrival of the Hubble Space Telescope, he observed Cepheids to calibrate the mean luminosity of nearby Type Ia supernovae (SNe Ia) which, used as standard candles, led to the cosmic value of H0 = 62.3 ± 1.3 ± 5.0 km s−1 Mpc−1. Eventually he turned to the tip of the red giant branch (TRGB) as a very powerful distance indicator. A compilation of 176 TRGB distances yielded a mean, very local value of H0 = 62.9 ± 1.6 km s−1 Mpc−1 and shed light on the streaming velocities in the Local Supercluster. Moreover, TRGB distances are now available for six SNe Ia; if their mean luminosity is applied to distant SNe Ia, one obtains H0 = 64.6 ± 1.6 ± 2.0 km s−1 Mpc−1. The weighted mean of the two independent large-scale calibrations yields H0 = 64.1 km s−1 Mpc−1 within 3.6%.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Anderson, L., Aubourg, E., Bailey, S., et al. 2012, arXiv:1203.6594Google Scholar
Baade, W. 1944, ApJ, 100, 137CrossRefGoogle Scholar
Baade, W. 1948, PASP, 60, 230CrossRefGoogle Scholar
Baade, W. & Swope, H. H. 1963, AJ, 68, 435CrossRefGoogle Scholar
Beutler, F., Blake, C., Colless, M., et al. 2011, MNRAS, 416, 3017Google Scholar
Blakeslee, J. P. 2012, Ap&SS, 341, 179Google Scholar
Blakeslee, J. P., Cantiello, M., Mei, S., et al. 2010, ApJ, 724, 657Google Scholar
Bresolin, F. 2011, ApJ, 729, 56Google Scholar
Burbidge, G. R., Burbidge, E. M., & Sandage, A. 1963, Rev. Mod. Phys., 35, 947Google Scholar
Calabrese, E., Archidiacono, M., Melchiorri, A., & Ratra, B. 2012, Phys. Rev. D, 86, 043520Google Scholar
de Vaucouleurs, G. & Peters, W. L. 1985, ApJ, 297, 27CrossRefGoogle Scholar
Eggen, O. J., Lynden-Bell, D., & Sandage, A. 1962, ApJ, 136, 748Google Scholar
Federici, L., Cacciari, C., Bellazzini, M., Fusi Pecci, F., Galleti, S., & Perina, S. 2012, A&A, 544, A155Google Scholar
Freedman, W. L., Madore, B. F., Gibson, B. K., et al. 2001, ApJ, 553, 47CrossRefGoogle Scholar
Hicken, M., Wood-Vasey, W. M., Blondin, S., et al. 2009, ApJ, 700, 1097Google Scholar
Hinshaw, G., Nolta, M. R., Bennett, C. L., et al. 2007, ApJ, 170, 288Google Scholar
Humason, M. L., Mayall, N. U., & Sandage, A. R. 1956, AJ, 61, 97Google Scholar
Kessler, R., Becker, A. C., Cinabro, D., et al. 2009, ApJ, 185, 32Google Scholar
Komatsu, E., Smith, K. M., Dunkley, J., et al. 2011, ApJ, 192, 18Google Scholar
Kudritzky, R. P. & Urbaneja, M. A. 2012, Ap&SS, 341, 131Google Scholar
Lee, M. G., Freedman, W. L., & Madore, B. F. 1993, ApJ, 417, 553Google Scholar
Lee, M. G. & Jang, I. S. 2012, ApJ, 760, L14CrossRefGoogle Scholar
Mould, J. & Sakai, S. 2009, ApJ, 697, 996Google Scholar
Nugent, P. E., Sullivan, M., Cenko, S. B., et al. 2011, Nature, 480, 344CrossRefGoogle Scholar
Phillips, M. M. 1993, ApJ, 413, L105Google Scholar
Reid, B. A., Samushia, L., White, M., et al. 2012a, MNRAS, 426, 2719CrossRefGoogle Scholar
Reid, M. J., Braatz, J. A., Condon, J. J., Lo, K. Y., Kuo, C. Y., Impellizzeri, C. M. V., & Henkel, C. 2012b, ApJ, submitted (arXiv:1207.7292)Google Scholar
Reindl, B., Tammann, G. A., Sandage, A., & Saha, A. 2005, ApJ, 624, 532Google Scholar
Riess, A. G., Macri, L., Casertano, S., et al. 2011, ApJ, 730, 119Google Scholar
Rizzi, L., Tully, R. B., Makarov, D., et al. 2007, ApJ, 661, 815Google Scholar
Saha, A., Thim, F., Tammann, G. A., Reindl, B., & Sandage, A. 2006, ApJ, 165, 108Google Scholar
Sakai, S., Ferrarese, L., Kennicutt, R. C., & Saha, A. 2004, ApJ, 608, 42Google Scholar
Salaris, M. 2012, Ap&SS, 341, 65Google Scholar
Sánchez, A. G., Scoccola, C. G., Ross, A. J., et al. 2012, MNRAS, 425, 415Google Scholar
Sandage, A. 1953, AJ, 58, 61Google Scholar
Sandage, A. 1958a, ApJ, 127, 513Google Scholar
Sandage, A. 1958b, Richerche Astronomiche, 5, 41Google Scholar
Sandage, A. 1961, ApJ, 133, 355Google Scholar
Sandage, A. 1962a, ApJ, 136, 319Google Scholar
Sandage, A. 1962b, in: Problems of Extra-Galactic Research (McVittie, G.C., ed.), Proc. IAU Symp. 15, p. 359Google Scholar
Sandage, A. 1970, Phys. Today, 23 (2), 34CrossRefGoogle Scholar
Sandage, A. 1972, QJRAS, 13, 282Google Scholar
Sandage, A. 1975, ApJ, 202, 563Google Scholar
Sandage, A. 1986, in: Star-forming dwarf galaxies and related objects (Kunth, D., Thuan, T. X., & Trân Thanh Vân, J., eds.), Gif-sur-Yvette: Ed. Frontiéres, p. 31Google Scholar
Sandage, A. 2000, PASP, 112, 504Google Scholar
Sandage, A. 2004, The Mount Wilson Observatory, Cambridge: Cambridge Univ. PressGoogle Scholar
Sandage, A. 2010, AJ, 139, 728CrossRefGoogle Scholar
Sandage, A., Bell, R. A., & Tripicco, M. J. 1999, ApJ, 522, 250Google Scholar
Sandage, A., Binggeli, B., & Tammann, G. A. 1985, AJ, 90, 1759Google Scholar
Sandage, A., Reindl, B., & Tammann, G. A. 2010, ApJ, 714, 1441Google Scholar
Sandage, A. & Schwarzschild, M. 1952, ApJ, 111, 463Google Scholar
Sandage, A. & Tammann, G. A. 1968, ApJ, 151, 531Google Scholar
Sandage, A., & Tammann, G.A. 1974–1975, ApJ, 190, 525; 191, 603; 194, 223; 194, 559; 196, 313; 197, 265Google Scholar
Sandage, A. & Tammann, G. A. 1982, ApJ, 256, 339Google Scholar
Sandage, A. & Tammann, G. A. 1984, in: Large-Scale Structure of the Universe, Cosmology and Fundamental Physics (Setti, G., & van Hove, L., eds.), Garching: ESO, p. 127Google Scholar
Sandage, A. & Tammann, G. A. 2006, ARA&A, 44, 93Google Scholar
Sandage, A., Tammann, G. A., & Federspiel, M. 1995, ApJ, 452, 1Google Scholar
Sandage, A., Tammann, G. A., & Hardy, E. 1972, ApJ, 172, 253Google Scholar
Sandage, A., Tammann, G. A., Saha, A., Reindl, B., Macchetto, F. D., & Panagia, N. 2006, ApJ, 653, 843Google Scholar
Schweizer, F., Burns, C. R., Madore, B. F., et al. 2008, AJ, 136, 1482Google Scholar
Shappee, B. J., & Stanek, K. Z. 2011, ApJ, 733, 124CrossRefGoogle Scholar
Tammann, G. A. & Leibundgut, B. 1990, A&A, 236, 9Google Scholar
Tammann, G. A. & Reindl, B. 2012a, Ap&SS, 341, 3Google Scholar
Tammann, G. A. & Reindl, B. 2012b, A&A, arXiv:1208.5054Google Scholar
Tammann, G. A., Reindl, B., & Sandage, A. 2011, A&A, 531, 134Google Scholar
Tammann, G. A. & Sandage, A. 1968, ApJ, 151, 825Google Scholar
Tammann, G. A. & Sandage, A. 2010, in: The Impact of HST on European Astronomy (Macchetto, F.D., ed.), Astrophys. Space Sci. Proc., Dordrecht: Springer, p. 289Google Scholar
Tammann, G. A., Sandage, A., & Reindl, B. 2008a, ApJ, 679, 52Google Scholar
Tammann, G. A., Sandage, A., & Reindl, B. 2008b, A&ARev, 15, 289Google Scholar
van den Bergh, S. 1960, Publ. David Dunlap Obs., 2, 159Google Scholar
Yahil, A., Sandage, A., & Tammann, G. A. 1980, ApJ, 242, 448Google Scholar
Zwicky, F., et al. 1961–1968, Catalogue of galaxies and of clusters of galaxies, Vol. I-VI, Pasadena: California Institute of TechnologyGoogle Scholar