Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T13:57:39.921Z Has data issue: false hasContentIssue false

AGN torus properties with WISE

Published online by Cambridge University Press:  25 July 2014

Robert Nikutta
Affiliation:
Departamento de Ciencias Físicas, Universidad Andrés Bello, Av. República 252, Santiago, Chile email: [email protected] Department of Physics & Astronomy, University of Kentucky, Lexington, KY 40506, USA email: [email protected]
Maia Nenkova
Affiliation:
School of English and Liberal Studies, Seneca College, Toronto, ON, M2J 2X5, Canada email: [email protected]
Željko Ivezić
Affiliation:
Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195-1580, USA email: [email protected], [email protected]
Nicholas Hunt-Walker
Affiliation:
Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195-1580, USA email: [email protected], [email protected]
Moshe Elitzur
Affiliation:
Department of Physics & Astronomy, University of Kentucky, Lexington, KY 40506, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Wide-field Infrared Survey Explorer (WISE) has scanned the entire sky with unprecedented sensitivity in four infrared bands, at 3.4, 4.6, 12, and 22 μm. The WISE Point Source Catalog contains more than 560 million objects, among them hundreds of thousands of galaxies with Active Nuclei (AGN). While type 1 AGN, owing to their bright and unobscured nature, are easy to detect and constitute a rather complete and unbiased sample, their type 2 counterparts, postulated by AGN unification, are not as straightforward to identify. Matching the WISE catalog with known QSOs in the Sloan Digital Sky Survey we confirm previous identification of the type 1 locus in the WISE color space. Using a very large database of the popular Clumpy torus models, we find the colors of the putative type 2 counterparts, and also, for the first time, predict their number vs. flux relation that can be expected to be observed in any given WISE color range. This will allow us to put statistically very significant constraints on the torus parameters. Our results are a successful test of the AGN unification scheme.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Alonso-Herrero, A., et al. 2011, ApJ, 736, 82Google Scholar
Antonucci, , 1993, ARA&A, 31, 473Google Scholar
Antonucci, R. R. J. & Miller, J. S. 1985, ApJ, 297, 621Google Scholar
Asensio Ramos, A. & RamosAlmeida, C. Almeida, C. 2009, ApJ, 696, 2075Google Scholar
Deo, R. P., et al. 2011, ApJ, 729, 108CrossRefGoogle Scholar
Efstathiou, A. & Rowan-Robinson, M. 1995, MNRAS, 273, 649CrossRefGoogle Scholar
Elitzur, M. & Shlosman, I. 2006, ApJ, 648, L101Google Scholar
Fritz, J., Franceschini, A., & Hatziminaoglou, E. 2006, MNRAS, 366, 767Google Scholar
Granato, G. L. & Danese, L. 1994, MNRAS, 268, 235CrossRefGoogle Scholar
Gratadour, D., et al. 2003, A&A, 411, 335Google Scholar
Hao, L., et al. 2007, ApJ, 655, L77CrossRefGoogle Scholar
Hönig, S. F., et al. 2006, A&A, 452, 459Google Scholar
Ivezić, Ž. & Elitzur, M. 1997, MNRAS, 287, 799Google Scholar
Jaffe, W., et al. 2004, Nature, 429, 47Google Scholar
Krolik, J. H. & Begelman, M. C. 1988, ApJ, 329, 702Google Scholar
Malmrose, M. P., et al. 2011, ApJ, 732, 116CrossRefGoogle Scholar
Markowitz, A., Krumpe, M., & Nikutta, R. 2014, MNRAS, 439, 1403Google Scholar
Mason, R. E., et al. 2009, ApJ, 693, L136Google Scholar
Mason, R. E., et al. 2013, ApJ, 777, 164Google Scholar
Nenkova, M., Ivezić, Ž., & Elitzur, M. 2002, ApJ, 570, L9Google Scholar
Nenkova, M., et al. 2008a, ApJ, 685, 147Google Scholar
Nenkova, M., et al. 2008b, ApJ, 685, 160Google Scholar
Nikutta, R., Elitzur, M., & Lacy, M. 2009, ApJ, 707, 1550CrossRefGoogle Scholar
Nikutta, R., Krumpe, M., & Markowitz, A. 2014, MNRAS, in prep.Google Scholar
Nikutta, R., et al. 2014a, MNRAS, in print, arXiv: astro-ph/1405.7966Google Scholar
Nikutta, R., et al. 2014b, MNRAS, in prep.Google Scholar
Poncelet, A., Perrin, G., & Sol, H. 2006, A&A, 450, 483Google Scholar
Raban, D., et al. 2009, MNRAS, 394, 1325Google Scholar
Risaliti, G., Elvis, M., & Nicastro, F. 2002, ApJ, 571, 234Google Scholar
Rivers, E., Markowitz, A., & Rothschild, R. 2011, ApJ, 742, L29Google Scholar
Schartmann, M., et al. 2008, A&A, 482, 67Google Scholar
Stalevski, M., et al. 2012, MNRAS, 420, 2756Google Scholar
Tristram, K. R. W., et al. 2007, A&A, 474, 837Google Scholar
Urry, C. M. & Padovani, P. 1995, PASP, 107, 803Google Scholar
Wright, E. L., et al. 2010, AJ, 140, 1868Google Scholar
Wu, Y., et al. 2009, ApJ, 701, 658Google Scholar
Yan, L., et al. 2013, AJ, 145, 55CrossRefGoogle Scholar