Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T18:01:12.420Z Has data issue: false hasContentIssue false

The AGN dependence on cluster mass

Published online by Cambridge University Press:  07 April 2020

Elias Koulouridis
Affiliation:
IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France Univ. Paris Diderot, AIM, Sorbonne Paris Cité, CEA, CNRS, F-91191 Gif-sur-Yvette, France email: [email protected]
Marina Ricci
Affiliation:
Laboratoire Lagrange, Université Cte dAzur, Observatoire de la Cte dAzur, CNRS, Blvd de l’Observatoire, CS 34229, 06304, Nice cedex 4, France
and the XXL collaboration
Affiliation:
Laboratoire Lagrange, Université Cte dAzur, Observatoire de la Cte dAzur, CNRS, Blvd de l’Observatoire, CS 34229, 06304, Nice cedex 4, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present the results of a study of the AGN density in a homogeneous and well studied sample of 167 bona-fide X-ray galaxy clusters (0.1<z<0.5). Our aim is to study the AGN activity in 167 XXL X-ray galaxy clusters as a function of the cluster mass and the location of the AGN in the cluster. We report a significant AGN excess in our low-mass cluster sub-sample between 0.5r500 and 2r500. In contrast, the high-mass sub-sample presents no AGN excess. The AGN excess in poor clusters indicates AGN triggering, supporting previous studies that reported enhanced galaxy merging in the cluster outskirts. This effect is probably prevented by high velocity dispersions in high-mass clusters. Comparing also with previous studies of massive or high-redshift clusters, we conclude that the AGN fraction in cluster galaxies anti-correlates strongly with cluster mass.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Arnold, T. J., Martini, P., Mulchaey, J. S., Berti, A., & Jeltema, T. E. 2009, ApJ, 707, 1691CrossRefGoogle Scholar
Bufanda, E., Hollowood, D., Jeltema, T. E., et al. 2017, MNRAS, 465, 2531CrossRefGoogle Scholar
Caglar, T. & Hudaverdi, M. 2017, MNRAS, 471, 4990CrossRefGoogle Scholar
Chiappetti, L., Fotopoulou, S., Lidman, C., et al. 2018, XXL paper XX, accepted in A&AGoogle Scholar
Cowie, L. L. & Songaila, A. 1977, Nature, 266, 501CrossRefGoogle Scholar
Davis, D. S., Miller, N. A., & Mushotzky, R. F. 2003, ApJ, 597, 20210.1086/378384CrossRefGoogle Scholar
Ehlert, S., Allen, S. W., Brandt, W. N., et al. 2015, MNRAS, 446, 270910.1093/mnras/stu2091CrossRefGoogle Scholar
Ehlert, S., Allen, S. W., Brandt, W. N., et al. 2013, MNRAS, 428, 350910.1093/mnras/sts288CrossRefGoogle Scholar
Ehlert, S., von der Linden, A., Allen, S. W., et al. 2014, MNRAS, 437, 1942CrossRefGoogle Scholar
Ellison, S. L., Patton, D. R., Mendel, J. T., & Scudder, J. M. 2011, MNRAS, 418, 204310.1111/j.1365-2966.2011.19624.xCrossRefGoogle Scholar
Haggard, D., Green, P. J., Anderson, S. F., et al. 2010, ApJ, 723, 144710.1088/0004-637X/723/2/1447CrossRefGoogle Scholar
Haines, C. P., Pereira, M. J., Sanderson, A. J. R., et al. 2012, ApJ, 754, 9710.1088/0004-637X/754/2/97CrossRefGoogle Scholar
Hopkins, P. F., Kocevski, D. D., & Bundy, K. 2014, MNRAS, 445, 82310.1093/mnras/stu1736CrossRefGoogle Scholar
Kawakatu, N., Anabuki, N., Nagao, T., Umemura, M., & Nakagawa, T. 2006, ApJ, 637, 10410.1086/498255CrossRefGoogle Scholar
Koulouridis, E. 2014, A&A, 570, A72Google Scholar
Koulouridis, E., Chavushyan, V., Plionis, M., et al. 2006a, ApJ, 651, 93CrossRefGoogle Scholar
Koulouridis, E. & Plionis, M. 2010, ApJ, 714, L18110.1088/2041-8205/714/2/L181CrossRefGoogle Scholar
Koulouridis, E., Plionis, M., Chavushyan, V., et al. 2013, A&A, 552, A135Google Scholar
Koulouridis, E., Plionis, M., Chavushyan, V., et al. 2006b, ApJ, 639, 3710.1086/498421CrossRefGoogle Scholar
Koulouridis, E., Plionis, M., Melnyk, O., et al. 2014, A&A, 567, A83Google Scholar
Koulouridis, E., Poggianti, B., Altieri, B., et al. 2016, A&A, 592, A11Google Scholar
Krishnan, C., Hatch, N. A., Almaini, O., et al. 2017, MNRAS, 470, 2170CrossRefGoogle Scholar
Lehmer, B. D., Lucy, A. B., Alexander, D. M., et al. 2013, ApJ, 765, 87CrossRefGoogle Scholar
Lidman, C., Ardila, F., Owers, M., et al. 2016, PASA, 33, e001CrossRefGoogle Scholar
Martini, P., Kelson, D. D., Kim, E., Mulchaey, J. S., & Athey, A. A. 2006, ApJ, 644, 116CrossRefGoogle Scholar
Martini, P., Miller, E. D., Brodwin, M., et al. 2013, ApJ, 768, 1CrossRefGoogle Scholar
Martini, P., Mulchaey, J. S., & Kelson, D. D. 2007, ApJ, 664, 761CrossRefGoogle Scholar
Martini, P., Sivakoff, G. R., & Mulchaey, J. S. 2009, ApJ, 701, 66CrossRefGoogle Scholar
Marziani, P., D’Onofrio, M., Bettoni, D., et al. 2017, A&A, 599, A83Google Scholar
Melnyk, O., Elyiv, A., Smolcic, V., et al. 2017, [arXiv:1712.01872]Google Scholar
Oh, S., Mulchaey, J. S., Woo, J.-H., et al. 2014, ApJ, 790, 43CrossRefGoogle Scholar
Pierre, M., Pacaud, F., Adami, C., et al. 2016, A&A, 592, A1Google Scholar
Poggianti, B. M., Moretti, A., Gullieuszik, M., et al. 2017, ApJ, 844, 48CrossRefGoogle Scholar
Popesso, P., Biviano, A., Böhringer, H., & Romaniello, M. 2006, A&A, 445, 29Google Scholar