Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-29T01:22:28.028Z Has data issue: false hasContentIssue false

Advancing the physics of cosmic distances: Conference summary

Published online by Cambridge University Press:  26 February 2013

Richard de Grijs*
Affiliation:
Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871, China email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Knowing the distance of an astrophysical object is key to understanding it. However, at present, comparisons of theory and observations are hampered by precision (or lack thereof) in distance measurements or estimates. Putting the many recent results and new developments into the broader context of the physics driving cosmic distance determination is the next logical step, which will benefit from the combined efforts of theorists, observers and modellers working on a large variety of spatial scales, and spanning a wide range of expertise. IAU Symposium 289 addressed the physics underlying methods of distance determination across the Universe, exploring the various approaches employed to define the milestones along the road. The meeting provided an exciting snapshot of the field of distance measurement, offering not only up-to-date results and a cutting-edge account of recent progress, but also full discussion of the pitfalls encountered and the uncertainties that remain. One of the meeting's main aims was to provide a roadmap for future efforts in this field, both theoretically and observationally.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Arenou, F., Lindegren, L., Froeschle, M., Gomez, A. E., Turon, C., Perryman, M. A. C., & Wielen, R. 1995, A&A, 304, 52Google Scholar
Bonamente, M., Joy, M. K., LaRoque, S. J., Carlstrom, J. E., Reese, E. D., & Dawson, K. S. 2006, ApJ, 647, 25Google Scholar
Ciardullo, R. 2006, In Planetary Nebulae Beyond the Milky Way (Stanghellini, L., Walsh, J. R., & Douglas, N., eds.), ESO Astrophys. Symp., p. 79Google Scholar
Cioni, M.-R. L., Bekki, K., Clementini, G., et al. 2008, Publ. Astron. Soc. Aus., 25, 121CrossRefGoogle Scholar
Cioni, M.-R. L., Clementini, G., Girardi, L., et al. 2011, A&A, 527, A116Google Scholar
Dambis, A. K. 2009, MNRAS, 396, 553CrossRefGoogle Scholar
de Grijs, R. 2011, An Introduction to Distance Measurement in Astronomy, Wiley–Blackwell Acad. Publ.CrossRefGoogle Scholar
Emerson, J. P., Sutherland, W. J., McPherson, A. M., Craig, S. C., Dalton, G. B., & Ward, A. K. 2004, ESO Messenger, 117, 27Google Scholar
Freedman, W. L. & Madore, B. F., 2010, ARA&A, 48, 673Google Scholar
Freedman, W. L., Madore, B. F., Gibson, B. K., et al. 2001, ApJ, 553, 47Google Scholar
Freedman, W. L., Madore, B. F., Scowcroft, V., et al. 2012, ApJ, 758, 24CrossRefGoogle Scholar
Holanda, R. F. L., Lima, J. A. S., & Ribeiro, M. B. 2010, ApJ, 722, L233CrossRefGoogle Scholar
Lindegren, L. 1995 A&A, 304, 61Google Scholar
Madore, B. F., Rigby, J., Freedman, W. L., Persson, S. E., Sturch, L., & Mager, V. 2009a, ApJ, 693, 936CrossRefGoogle Scholar
Madore, B. F., Freedman, W. L., Rigby, J., Persson, S. E., Sturch, L., & Mager, V. 2009b, ApJ, 695, 988Google Scholar
Majaess, D. J. 2010, Acta Astron., 60, 55Google Scholar
Matsunaga, N., Kawadu, T., Nishiyama, S., Nagayama, T., Hatano, H., Tamura, M., Glass, I. S., & Nagata, T. 2009, MNRAS, 399, 1709Google Scholar
Mermilliod, J.-C., Turon, C., Robichon, N., Arenou, F., & Lebreton, Y. 1997, ESA Spec. Publ., 402, 643Google Scholar
Minniti, D., Lucas, P. W., Emerson, J. P., et al. 2010, New Astron., 15, 433Google Scholar
Morris, M. R., Meyer, L., & Ghez, A. M. 2012, Res. Astron. Astrophys., 12, 995CrossRefGoogle Scholar
Pietrzyński, G., Thompson, I. B., Gieren, W., et al. 2012, Nature, 484, 75CrossRefGoogle Scholar
Pinsonneault, M. H., Stauffer, J., Soderblom, D. R., King, J. R., & Hanson, R. B. 1998, ApJ, 504, 170Google Scholar
Ripepi, V., Moretti, M. I., Marconi, M., et al. 2012, MNRAS, 424, 1807Google Scholar
Robichon, N., Arenou, F., Mermilliod, J.-C., & Turon, C. 1999, A&A, 345, 471Google Scholar
Schaefer, B. E. 2008, AJ, 135, 112Google Scholar
Suyu, S. H., Marshall, P. J., Auger, M. W., Hilbert, S., Blandford, R. D., Koopmans, L. V. E., Fassnacht, C. D., & Treu, T. 2010, ApJ, 711, 201Google Scholar
Suyu, S. H., Auger, M. W., Hilbert, S., et al. 2012, ApJ, submitted (arXiv:1208.6010)Google Scholar
Valenti, E., Ferraro, F. R., & Origlia, L. 2004, MNRAS, 351, 1204Google Scholar
Valls-Gabaud, D. 2007, Proc. IAU Symp., 240, 281Google Scholar
van Leeuwen, F. 1999, A&A, 341, L71Google Scholar
van Leeuwen, F. 2007a, Astrophys. Space Sci. Libr., 350Google Scholar
van Leeuwen, F. 2007b, A&A, 474, 653Google Scholar
van Leeuwen, F. & Hansen-Ruiz, C. S. 1997, ESA Spec. Publ., 402, 689Google Scholar