Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T05:44:53.352Z Has data issue: false hasContentIssue false

Accretion-powered Outflows in AGB Stars

Published online by Cambridge University Press:  30 November 2022

Raghvendra Sahai
Affiliation:
Jet Propulsion Laboratory, Pasadena, CA, USA email: [email protected]
Jorge Sanz-Forcada
Affiliation:
Centro de Astrobiologa (CSIC-INTA), ESAC, Villanueva de la Cañada, Madrid, Spain
Carmen Sanchez-Contreras
Affiliation:
Centro de Astrobiologa (CSIC-INTA), ESAC, Villanueva de la Cañada, Madrid, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One of the big challenges for 21st century stellar astrophysics is the impact of binary interactions on stellar evolution. Such interactions are believed to play a key role in the death throes of 1-8 M stars, as they evolve from the AGB stars into Planetary Nebulae. X-ray surveys of UV-emitting AGB stars show that ∼40% of objects with FUV emission and GALEX FUV/NUV flux ratios ≳0.2 have variable X-ray emission characterized by very high temperatures (Tx∼35-160 MK) and luminosities (Lx∼0.002-0.2L). We hypothesize that such AGB stars have accretion and (accretion-powered) outflows associated with a close binary companion. UV spectroscopy with HST/STIS of our brightest object (Y Gem) shows the presence of infalling and outflowing gas, providing direct kinematic confirmation of this hypothesis. However, the UV-emitting AGB star population is dominated by objects with little or no FUV emission, and we do not know whether the UV emission from these is intrinsic to the AGB star or extrinsic (i.e., due to binarity). Here we present the first results from a large grid of simple chromospheric models to help discriminate between the intrinsic and extrinsic mechanisms of UV emission for AGB stars.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

References

Belczyński, K., Mikołajewska, J., Munari, U., Ivison, R. J., Friedjung, M. 2000. A&AS 146, 407435.Google Scholar
Decin, L. and 34 colleagues 2020. Science 369, 1497–1500.Google Scholar
Ferland, G. J. and 10 colleagues 2017. Rev. Mexicana AyA 53, 385–438.Google Scholar
Hohle, M. M., Neuhäuser, R., Schutz, B. F. 2010. AN 331, 349.Google Scholar
Kastner, J. H., Soker, N. 2004. ApJ 608, 978982.Google Scholar
Luttermoser, D. G., Johnson, H. R., Eaton, J. 1994. ApJ 422, 351.CrossRefGoogle Scholar
Montez, R., Ramstedt, S., Kastner, J. H., Vlemmings, W., Sanchez, E. 2017. ApJ 841, 33.CrossRefGoogle Scholar
Ortiz, R., Guerrero, M. A. 2016. MNRAS 461, 30363046.CrossRefGoogle Scholar
Ortiz, R., Guerrero, M. A. 2021. ApJ 912, 93.CrossRefGoogle Scholar
Sahai, R. & Trauger, J. T. 1998. AJ 116, 13571366.CrossRefGoogle Scholar
Sahai, R., Morris, M., Sánchez Contreras, C., Claussen, M. 2006. in: Barlow, M.J. & Mendéz, R.H. (eds.), Planetary Nebulae in our Galaxy and Beyond, Proc. IAU Symposium No. 234, 499–500.Google Scholar
Sahai, R., Morris, M., Sánchez Contreras, C., Claussen, M. 2007. AJ 134, 22002225.CrossRefGoogle Scholar
Sahai, R., Findeisen, K., Gil de Paz, A., Sánchez Contreras, C. 2008. ApJ 689, 12741278.CrossRefGoogle Scholar
Sahai, R., Morris, M. R. & Villar, G. G. 2011. AJ 141, 134164.Google Scholar
Sahai, R., Sánchez Contreras, C., Mangan, A. S., Sanz-Forcada, J., Muthumariappan, C., Claussen, M. J. 2018. ApJ 860, 105.Google Scholar
Sahai, R., Young, O., Sanchez Contreras, C., Sanz-Forcada, J. 2020. AAS Meeting Abstracts #235.Google Scholar