Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-24T12:21:33.939Z Has data issue: false hasContentIssue false

60Fe and Massive Stars

Published online by Cambridge University Press:  01 April 2008

Wei Wang*
Affiliation:
National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Gamma-ray line emission from radioactive decay of 60Fe provides constraints on nucleosynthesis in massive stars and supernovae. We detect the γ-ray lines from 60Fe decay at 1173 and 1333 keV using three years of data from the spectrometer SPI on board INTEGRAL. The average flux per line is (4.4 ± 0.9) × 10−5 ph cm−2 s−1 rad−1 for the inner Galaxy region. Deriving the Galactic 26Al gamma-ray line flux with using the same set of observations and analysis method, we determine the flux ratio of 60Fe/26Al gamma-rays as 0.15 ± 0.05. We discuss the implications of these results for the widely-held hypothesis that 60Fe is synthesized in core-collapse supernovae, and also for the closely-related question of the precise origin of 26Al in massive stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Diehl, R. et al. 2006, Nature 439, 45Google Scholar
Diehl, R. et al. 1997, eds. Dermer, C. D., Strickman, M. S. and Kurfess, J. D., AIP Conf. Proc. 410, 1109Google Scholar
Harris, M. J. et al. 1997, eds. Dermer, C. D., Strickman, M. S. and Kurfess, J. D., AIP Conf. Proc. 410, 1079Google Scholar
Harris, M. J. et al. 2005, A&A 433, L49Google Scholar
Hirschi, R., Meynet, G., & Maeder, A. 2004, A&A, 425, 649Google Scholar
Knie, K. et al. 2004, Physical Review Letters 93, 171103CrossRefGoogle Scholar
Leising, M. D. & Share, G. H. 1994, ApJ 424, 200CrossRefGoogle Scholar
Limongi, M. & Chieffi, A. 2003, ApJ 592, 404Google Scholar
Limongi, M. & Chieffi, A. 2006, ApJ 647, 483Google Scholar
Mahoney, W. A. et al. 1982, ApJ 262, 742CrossRefGoogle Scholar
Naya, J. E. et al. 1998, ApJL 499, L169Google Scholar
Prantzos, N. 2004, A&A 420, 1033Google Scholar
Rauscher, T., Herger, A., Hoffman, R. D. & Woosley, S. E. 2002, ApJ 576, 323Google Scholar
Shukolyukov, A. & Lugmair, G. W. 1993, Science 259, 1138Google Scholar
Smith, D. M. 2004, New Astronomy Review 48, 87Google Scholar
Tachibana, S. et al. 2006, ApJL 639, L87Google Scholar
The, L. S. et al. 2006, A&A 450, 1037Google Scholar
Timmes, F. X. et al. 1995, ApJ 449, 204CrossRefGoogle Scholar
Wang, W. et al. 2007, A&A 469, 1005Google Scholar
Winkler, C. et al. 2003, A&A 411, L1Google Scholar
Woosley, S. E. 1997, ApJ 476, 801Google Scholar